Why do mercury lamps without phosphors emit visible light at high pressure? What…

Why do mercury lamps without phosphors emit visible light at high pressure? What are the “forbidden” transitions?

At low pressure, a mercury lamp emits mostly 254-nanometer ultraviolet light. That light is created when an electron in the mercury atom goes from its lowest excited orbital to its ground (normal) orbital. The other wavelengths of light emitted by the low-pressure lamp are weak and widely spaced in wavelength. An electron must sent into a very highly excited orbital in order to emit one of these other wavelengths. But at high pressure, mercury atoms have trouble sending their favorite 254 nanometer light out of the lamp. Whenever one of the atoms emits a particle of 254-nanometer light (moving its electron from the first excited orbital to the ground orbital), another nearby atom absorbs that particle of light (moving its electron from the ground orbital to the first excited orbital). As a result the 254-nanometer light cannot escape from the lamp; it becomes trapped in the mercury gas! Instead, the atoms begin to send their energy out of the lamp by concentrating on radiative transitions between highly excited orbitals and that lowest excited orbital. These wavelengths become more common in the light emission from the lamp as its pressure rises. But some radiative transitions that are forbidden at low pressure (that cannot occur because an electron is not able to move from one particular excited orbital to another particular excited orbital) become allowed at high pressure. Collisions break many of the rules that govern atomic behavior, allowing otherwise forbidden events to occur. In the case of the mercury lamp, collisions at high pressure permit the mercury atoms to emit wavelengths of light that they cannot emit a low pressure when collisions are rare.

Leave a Reply