How do neon lights work?

How do neon lights work? — MT, Cement City, MI

A neon light uses a very high voltage to propel an electric current through a low-density gas of neon atoms. These neon atoms are trapped inside a glass tube and the current passes between two metal electrodes at opposite ends of that tube. A high voltage power supply—typically a neon sign transformer—pumps a large number of negative charges onto one electrode and a large number of positive charges onto the other electrode. Because like charges repel while opposite charges attract, there are strong forces pushing the charges from one electrode toward those on the other electrode. Eventually, charges at the two ends of the tube begin to leap off the electrodes and into the neon gas so that they can flow toward one another. Current begins to flow through the tube. As the charges move through the gas, they frequently collide with neon atoms and occasionally transfer some of their energies to those neon atoms. During such an energy transfer, an electron in the neon atom shifts from its normal orbital to a higher energy orbital in which the electron doesn’t normally travel. The electron soon returns to its normal orbital and releases a particle of light—a photon—in the process. Since the most common orbital shift in an excited neon atom releases a particle of red light, a neon light emits a bright, reddish glow.

Leave a Reply