# Why does air speed up as it flows over an airplane wing?

#### Why does air speed up as it flows over an airplane wing? — MS

When air flows past an airplane wing, it breaks into two airstreams. The one that goes under the wing encounters the wing’s surface, which acts as a ramp and pushes the air downward and forward. The air slows somewhat and its pressure increases. Forces between this lower airstream and the wing’s undersurface provide some of the lift that supports the wing.

But the airstream that goes over the wing has a complicated trip. First it encounters the leading edge of the wing and is pushed upward and forward. This air slows somewhat and its pressure increases. So far, this upper airstream isn’t helpful to the plane because it pushes the plane backward. But the airstream then follows the curving upper surface of the wing because of a phenomenon known as the Coanda effect. The Coanda effect is a common behavior in fluids—viscosity and friction keep them flowing along surfaces as long as they don’t have to turn too quickly. (The next time your coffee dribbles down the side of the pitcher when you poured too slowly, blame it on the Coanda effect.)

Because of the Coanda effect, the upper airstream now has to bend inward to follow the wing’s upper surface. This inward bending involves an inward acceleration that requires an inward force. That force appears as the result of a pressure imbalance between the ambient pressure far above the wing and a reduced pressure at the top surface of the wing. The Coanda effect is the result (i.e. air follows the wing’s top surface) but air pressure is the means to achieve that result (i.e. a low pressure region must form above the wing in order for the airstream to arc inward and follow the plane’s top surface).

The low pressure region above the wing helps to support the plane because it allows air pressure below the wing to be more effective at lifting the wing. But this low pressure also causes the upper airstream to accelerate. With more pressure behind it than in front of it, the airstream accelerates—it’s pushed forward by the pressure imbalance. Of course, the low pressure region doesn’t last forever and the upper airstream has to decelerate as it approaches the wing’s trailing edge—a complicated process that produces a small amount of turbulence on even the most carefully designed wing.

In short, the curvature of the upper airstream gives rise to a drop in air pressure above the wing and the drop in air pressure above the wing causes a temporary increase in the speed of the upper airstream as it passes over much of the wing.