Please explain the forces that allow one team to win a Tug-O-War contest.

Please explain the forces that allow one team to win a Tug-O-War contest. — ES

If we neglect the mass of the rope, the two teams always exert equal forces on one another. That’s simply an example of Newton’s third law—for every force team A exerts on team B, there is an equal but oppositely directed force exerted by team B on team A. While it might seem that these two forces on the two teams should always balance in some way so that the teams never move, that isn’t the case. Each team remains still or accelerates in response to the total forces on that team alone, and not on the teams as a pair. When you consider the acceleration of team A, you must ignore all the forces on team B, even though one of those forces on team B is caused by team A. There are two important forces on team A: (1) the pull from team B and (2) a force of friction from the ground. That force of friction approximately cancels the pull from the team B because the two forces are in opposite horizontal directions. As long as the two forces truly cancel, team A won’t accelerate. But if team A doesn’t obtain enough friction from the ground, it will begin to accelerate toward team B. The winning team is the one that obtains more friction from the ground than it needs and accelerates away from the other team. The losing team is the one that obtains too little friction from the ground and accelerates toward the other team.

Leave a Reply