What does the f-number of a camera lens mean?

I have a 70 to 300 mm lens with f-5.6. But I can manually take it up to f-22. What does that mean and how does it work? Also why can’t I bring it down to say f2.8? — AR, Pakistan

The f-number of a lens measures the brightness of the image that lens casts onto the camera’s image sensor. Smaller f-numbers produce brighter images, but they also yield smaller depths of focus.

The f-number is actually the ratio of the lens’ focal length to its effective diameter (the diameter of the light beam it collects and uses for its image). Your zoom lens has a focal length that can vary from 70 to 300 mm and a minimum f-number of 5.6. That means the when it is acting as a 300 mm telephoto lens, its effective light gathering surface is about 53 mm in diameter (300 mm divided by 5.6 gives a diameter of 53 mm).

If you examine the lens, I think that you’ll find that the front optical element is about 53 mm in diameter; the lens is using that entire surface to collect light when it is acting as a 300 mm lens at f-5.6. But when you zoom to lower focal lengths (less extreme telephoto), the lens uses less of the light entering its front surface. Similarly, when you dial a higher f-number, you are closing a mechanical diaphragm that is strategically located inside the lens and causing the lens to use less light. It’s easy for the lens to increase its f-number by throwing away light arriving near the edges of its front optical element, but the lens can’t decrease its f-number below 5.6; it can’t create additional light gathering surface. Very low f-number lenses, particularly telephoto lenses with their long focal lengths, need very large diameter front optical elements. They tend to be big, expensive, and heavy.

Smaller f-numbers produce brighter images, but there is a cost to that brightness. With more light rays entering the lens and focusing onto the image sensor, the need for careful focusing becomes greater. The lower the f-number, the more different directions those rays travel and the harder it is to get them all to converge properly on the image sensor. At low f-numbers, only rays from a specific distance converge to sharp focus on the image sensor; rays from objects that are too close or too far from the lens don’t form sharp images and appear blurry.

If you want to take a photograph in which everything, near and far, is essentially in perfect focus, you need to use a large f-number. The lens will form a dim image and you’ll need to take a relatively long exposure, but you’ll get a uniformly sharp picture. But if you’re taking a portrait of a person and you want to blur the background so that it doesn’t detract from the person’s face, you’ll want a small f-number. The preferred portrait lenses are moderately telephoto—they allow you to back up enough that the person’s face doesn’t bulge out at you in the photograph—and they have very low f-numbers—their large front optical elements gather lots of light and yield a very shallow depth of focus.

Leave a Reply