In one of your answers, you said that the “water on the earth’s surface swells …

In one of your answers, you said that the “water on the earth’s surface swells up into two bulges: one on the side of the earth nearest the moon and one on the side farthest from the moon.” Can you explain why the water bulges up on the side farthest from the moon? — ST

To understand the two bulges, imagine three objects: the earth, a ball of water on the side of the earth nearest the moon, and a ball of water on the side of the earth farthest from the moon. Now picture those three objects orbiting the moon. In orbit, those three objects are falling freely toward the moon but are perpetually missing it because of their enormous sideways speeds. But the ball of water nearest the moon experiences a somewhat stronger moon-gravity than the other objects and it falls faster toward the moon. As a result, this ball of water pulls away from the earth—it bulges outward. Similarly, the ball of water farthest from the moon experiences a somewhat weaker moon-gravity than the other objects and it falls more slowly toward the moon. As a result, the earth and the other ball of water pull away from this outer ball so that this ball bulges outward, away from the earth.

It’s interesting to note that the earth itself bulges slightly in response to these tidal forces. However, because the earth is more rigid than the water, its bulges are rather small compared to those of the water.

Leave a Reply