If force causes only acceleration and not velocity, does a machine (i.e. an engi…

If force causes only acceleration and not velocity, does a machine (i.e. an engine) that causes a constant velocity in an adjacent object not exert a force?

If that adjacent object is free of any other forces, then no, the machine does not exert a force on it! This is a wonderful question, because it points toward many of the issues concerning energy and work. The bottom line is this: if some object is truly free moving (no other forces on it), it will move along at constant velocity without anything having to push on it. For example, if your car were truly free moving (no friction or air resistance), then it would coast forever on a level surface and the engine wouldn’t have to do anything. You could even put the car in neutral and turn off the engine. The only reason that you need an engine to keep pushing the car forward is because friction and air resistance push the car backwards.

Is there a fixed amount of force in the universe?

Is there a fixed amount of force in the universe?

No, forces generally depend on the distances between objects, so that two objects that are moving together or apart will experience different amounts of force as they move about. As a result, the total amount of force anywhere can change freely. But there are quantities that have fixed totals for the universe. The most important of these so-called “conserved” quantities is energy.

Why does an object accelerate when it changes direction?

Why does an object accelerate when it changes direction?

What you mean by “changes direction” is that the direction part of its velocity changes. For example, instead of heading east at 10 m/s (or 10 miles-per-hour, if that feels more comfortable), it heads north at 10 m/s (or 10 miles-per-hour). This change in direction involves acceleration. The car must accelerate toward the west in order to stop heading east, and it must accelerate toward the north in order to begin moving north. Actually, it probably does both at once, accelerating toward the northwest and shifting its direction of motion from eastward to northward.

What is deceleration?

Are you accelerating when your speed decreases?

Yes! If you are walking east and you come to a stop, it is because you accelerated to the west! By "deceleration" we mean acceleration in the direction opposite our direction of motion. Thus in a car, when you stomp on the brake and decelerate, you are actually accelerating toward the rear of the car (in the direction opposite its direction of motion).

If the Space Shuttle is always falls toward the center of the earth, how does it…

If the Space Shuttle is always falls toward the center of the earth, how does it get to outer space? If something accelerates, doesn’t it go faster and thus have its speed increase?

The second question first: no, an object can accelerate without going faster. In fact, a stopping object is accelerating! If an accelerating object can speed up or slow down, it can certainly maintain a constant speed. If you swing a ball around in a circle on a string, that ball is accelerating all the time but its speed isn’t changing.

Now the first question: for the space shuttle to reach orbit, it needs an additional force in the upward direction. It obtains that force by pushing exhaust gas downward so that the exhaust gas pushes it upward. During the time when it’s heading toward orbit, it’s not falling because it has an extra upward force on it. However, the Space Shuttle can leave its orbit and head off into outer space by traveling faster than it normally does. It acquires this increased speed by firing its rocket engines again. Its usual speed keeps it traveling in a circle near the earth’s surface. If it went a bit faster, its path wouldn’t be bent downward as much and it would travel more in a straight line and away from the earth. It would still be falling toward the earth (meaning that it would still be accelerating toward the earth), but its inertia would carry it farther away from the earth. If the Shuttle had enough speed, it would travel to the depths of space before the earth had time to slow its escape and bring it back.