What happens when a fluorescent lamp flickers during start-up but doesn’t fully …

What happens when a fluorescent lamp flickers during start-up but doesn’t fully light?

Sustaining the discharge in a gas lamp requires the steady production of charged particles. Even if a lamp contains many negatively charged electrons and positively charged ions, these particles will quickly migrate to the electrodes once electric fields are present in the tube. If they don’t produce more charged particles as they fly across the tube, these charged particles will quickly disappear and the discharge will stop. It takes a critical number of charged particles in the tube to ensure a steady production of new charged particles. Thus the tube may not always start, even if it has a brief flicker of light.

How do “forbidden transitions” become less forbidden as pressure builds?

How do “forbidden transitions” become less forbidden as pressure builds?

For an atom to determine that it cannot make a particular transition (that its electron cannot move from one particular orbital to another), it must first “test the water”. The atom effectively tries to make particular transition but finds that this transition is not possible. However, if the atom experiences a collision during the test period, the atom may “accidentally” undergo the forbidden transition. It is as though the atom was prevented from canceling the experiment.

What is the correct way to dispose of fluorescent lamps? Do they really have mer…

What is the correct way to dispose of fluorescent lamps? Do they really have mercury inside them? Is the powder that covers the inside of them dangerous? Is there a simple way to get rid of a burned fluorescent lamp without pollution? – Augusto

While there is mercury in a fluorescent lamp, the amount of mercury is relatively small. There are only about 0.5 milligrams of mercury in each kilogram of lamp, or 0.5 parts per million. In fact, because fluorescent lamps use so much less energy than incandescent lamps, they actually reduce the amount of mercury introduced into our environment. That’s because fossil fuels contain mercury and burning fossil fuels to obtain energy releases substantial amounts of mercury into the environment. If you replace your incandescent lamps with fluorescent lamps, the power company will burn less fuel and release less mercury. That’s one reason to switch to fluorescent lamps, even if you must simply throw those lamps away when they burn out. Nonetheless, there are programs to recycle the mercury in fluorescent lamps. Last year, the University of Virginia recycled 31 miles of fluorescent lamps. They distilled the mercury out of the white phosphor powder on the inner walls of the tubes. Once the mercury has been removed from that powder, the powder is not hazardous. The university also recycled the glass. One last note: the mercury is an essential component of the fluorescent lamp—mercury atoms inside the tube are what create ultraviolet light that is then converted to visible light by the white phosphor powder that covers the inside of the tube.

How do phosphors change the light from ultraviolet to visible?

How do phosphors change the light from ultraviolet to visible?

They absorb the light and light energy by transferring electrons from low energy valence levels to high-energy conduction levels. These electrons wander about inside the phosphors briefly, losing energy as heat, and then fall back down to empty valence levels. Since they have lost some of their energy to heat, the light that they emit has less energy than the light they absorbed. Incoming ultraviolet light is converted to outgoing visible light.

When the temperature is sub-zero (e.g., -40°), is it necessary to heat the e…

When the temperature is sub-zero (e.g., -40°), is it necessary to heat the electrodes or the gas or both for the tube to light? What is the optimum tube temperature with respect to efficiency?

Fluorescent lamps do not operate well in extreme cold. Below about 15° C (59° F), the density of mercury atoms in the tube’s vapor is too low to produce efficient light. While the tube also contains inert gases that allow it to start at almost any temperature, the scarcity of mercury atoms leads to a reduced light output. In any case, the electrodes must be heated to make them emit electrons to sustain the discharge.

The optimal internal temperature for a fluorescent lamp is about 60° C (140° F). The tube reaches this internal temperature when its outside is about 40° C (104° F). When the surrounding temperature exceeds 40° C, the tube begins to waste energy again because the density of mercury atoms in the vapor becomes too large.

How does a fluorescent light work?

How does a fluorescent light work?

A fluorescent lamp consists of a gas-filled glass tube with an electrode at each end. This lamp emits light when a current of electrons passes through it from one electrode to the other and excites mercury atoms in the tube’s vapor. The electrons are able to leave the electrodes because those electrodes are heated to high temperatures and an electric field, powered by the electric company, propels them through the tube. However, the light that the mercury atoms emit is actually in the ultraviolet, where it can’t be seen. To convert this ultraviolet light to visible light, the inside surface of the glass tube is coated with a fluorescent powder. When this fluorescent powder is exposed to ultraviolet light, it absorbs the light energy and reemits some of it as visible light, a process called “fluorescence.” The missing light energy is converted to thermal energy, making the tube slightly hot. By carefully selecting the fluorescent powders (called “phosphors”), the manufacturer of the light can tailor the light’s coloration. The most common phosphor mixtures these days are warm white, cool white, deluxe warm white, and deluxe cool white.

The only other significant component of the fluorescent lamp is its ballast. This device is needed to control the current flow through the tube. Gas discharges such as the one that occurs inside the lamp are notoriously unstable—they’re hard to start and, once they do start, tend to become too intense. To regulate the discharge, the ballast controls the amount of current flowing through the tube. In most older lamps, this control is done by an electromagnetic device called an inductor. An inductor opposes current changes and keeps a relatively constant current flowing through the tube (although that current does stop and reverse directions each time the power line current reverses directions — 120 times a second or 60 full cycles, over and back, in the United States). Some modern fluorescent lamps use electronic ballasts—sophisticated electronic controls that regulate current with the help of transistor-like components.

Where does the extra energy go after ultraviolet light goes through the phosphor…

Where does the extra energy go after ultraviolet light goes through the phosphor coating? Is it lost as heat?

Yes. The extra energy is converted into heat by the phosphors. Their electrons absorb the light energy, convert some of that energy into heat, and then reemit the light. Since the new light contains less energy per particle (per photon) than the old light, it appears as visible rather than ultraviolet light.

How does an ultraviolet (“black light”) fluorescent tube work?

How does an ultraviolet (“black light”) fluorescent tube work?

Some ultraviolet fluorescent tubes are simply the mercury discharge tubes (as in a normal fluorescent tube) but without any phosphor coating on the inside of the tube and with a quartz glass tube that transmits 254 nanometer light. In such a bulb, the 254-nanometer light emitted by mercury vapor in a discharge is emitted directly from the tube without being converted into visible light. A filter somewhere in the system absorbs the small amount of visible light emitted by a low-pressure mercury discharge. For the longer wavelength black light used in most applications, other gases that emit lots of 300-400 nanometer light are used. Again, these tubes have no phosphor coatings to convert the ultraviolet light into visible light. One other way to make longer wavelength black light is to use a mercury discharge but to coat the inside of the tube with a phosphor that fluoresces ultraviolet light between 300 and 400 nanometer.