What containers are not safe to use in a microwave? I am particularly concerned …

What containers are not safe to use in a microwave? I am particularly concerned about Styrofoam containers as I use them to make TV dinners for my family. Is it OK to heat directly in these containers?

The two critical issues with containers in a microwave are (1) that they do not absorb or reflect microwaves and (2) that they tolerate high temperatures. Concerning the first issue, a container that absorbs microwaves will become extremely hot and may be damaged or destroyed. Most plastics (including Styrofoam) don’t absorb microwaves and are fine. Glazed water-free ceramics and glasses are usually also fine, as long as they don’t have any metallic trim. Metal dishes are a poor choice because they reflect microwaves and lead to uneven heating. Unglazed ceramics absorb water and will overheat.

Concerning the second issue, many plastics melt or soften below the temperature of boiling water. Polystyrene, the plastic from which Styrofoam is made, has a glass transition temperature of almost exactly 212° Fahrenheit (100° Celsius). That means that it will begin to soften at just about the temperature of boiling water. While pure water will boil without much problem in Styrofoam, water containing dissolved solids such as sugar or salt will boil at a higher temperature and may melt the Styrofoam. You’ll know when this happens…it’s not really a health issue, just a potential for a messy oven. I’ve only encountered the problem once myself, when a Polystyrene gravy separator melted in the microwave and let the gravy spill.

How do metal rods short out the microwaves?

How do metal rods short out the microwaves?

If you arrange a metal rod so that it’s parallel to a microwave’s electric field, the microwave will push electric charges up and down that rod. This moving charge will waste some of the microwave’s energy by creating heat in the rod. But the main effect will be that the rod will reflect or scatter the microwave. The moving charge will emit its own microwave and this new microwave will interfere with the original one.

What exactly goes on when you’re cooking a potato in the microwave and it explod…

What exactly goes on when you’re cooking a potato in the microwave and it explodes?

A microwave oven heats food by depositing energy in its water. If you cook the food long enough, that water can begin to boil. If the food has a hard outer shell (e.g. a potato or a corn kernel), the boiling water can create enough pressure in the food to make it explode. That is what pops the corn in microwave popcorn and why the potato explodes if you don’t pierce it so that steam can escape.

How does a microwave oven defrost foods? Doesn’t it only work with water, not ic…

How does a microwave oven defrost foods? Doesn’t it only work with water, not ice?

In any frozen food, there are some water molecules that are relatively free to turn about. These molecules may be at the surfaces of ice crystals or sitting on the surface of food particles. These water molecules can absorb microwaves and heat. However, the heating is very uneven because as soon as any water crystal absorbs enough heat to melt, the resulting liquid water will begin to absorb microwaves much more strongly. That is why defrosting must be done slowly. Then the microwave deposited heat will have time to flow through the food and melt it uniformly. Otherwise, you can end up with boiling hot spots mixed together with frozen icy spots.

What happens if you start the microwave oven with nothing inside?

What happens if you start the microwave oven with nothing inside?

The magnetron creates microwaves that travel into the cooking chamber and should be absorbed there. If there is no food (or rather no water-containing food), those microwaves will not be absorbed and will eventually find their way back to the magnetron. Eventually the magnetron will absorb as many microwaves as it emits. This situation is hard on the magnetron, which works best when it has very little radiation returning to it. That’s why you should never run a microwave empty for more than a second or two.

How does the resonant cavity in the magnetron work?

How does the resonant cavity in the magnetron work?

When it’s active, the magnetron’s cavity has electric charge sloshing back and forth along its tines. The charge moves at a frequency determined by the shape and size of the cavity and these are carefully controlled so that the cavity’s natural resonance frequency is 2.45 gigahertz. To keep the charge sloshing, the magnetron adds negative charge from a hot filament wire located in the center of the cavity. Electrons flowing off of this wire are steered toward the negative tines by a magnetic field. As a result, the charges continue to slosh back and forth indefinitely. A small wire connected inside the magnetron extracts some of the energy in the magnetron and converts it into microwaves outside the magnetron. This wire acts as an antenna. The antenna is located in the pipe that carries the microwaves to the cooking chamber.

Why do microwave ovens cook so rapidly?

Why do microwave ovens cook so rapidly?

When you put solid food (a potato, not soup) into a conventional oven, the heat flows slowly into the center of that food. This heat must work its way into the food via thermal conduction, in which adjacent atoms and molecules transfer their motional energies in a long bucket-brigade process. The last part of a potato to become hot is its center. However, in a microwave oven, the microwaves travel well into the solid food and deposit their energy everywhere. The potato cooks throughout at a relatively even rate. The actual amount of heat and energy involved in conventional and microwave cooking is about the same. However, the microwaves can heat the food throughout without having to wait for the slow process of conduction to carry it inward from the food’s surface.

Why does water react in a violent and dangerous way when overheated in a microwa…

Why does water react in a violent and dangerous way when overheated in a microwave oven? CA

Water doesn’t always boil when it is heated above its normal boiling temperature (100 °C or 212 °F). The only thing that is certain is that above that temperature, a steam bubble that forms inside the body of the liquid will be able to withstand the crushing effects of atmospheric pressure. If no bubbles form, then boiling will simply remain a possibility, not a reality. Something has to trigger the formation of steam bubbles, a process known as “nucleation.” If there is no nucleation of steam bubbles, there will be no boiling and therefore no effective limit to how hot the water can become.

Nucleation usually occurs at hot spots during stovetop cooking or at defects in the surfaces of cooking vessels. Glass containers have few or no such defects. When you cook water in a smooth glass container, using a microwave oven, it is quite possible that there will be no nucleation on the walls of the container and the water will superheat. This situation becomes even worse if the top surface of the water is “sealed” by a thin layer of oil or fat so that evaporation can’t occur, either. Superheated water is extremely dangerous and people have been severely injured by such water. All it takes is some trigger to create the first bubble-a fork or spoon opening up the inner surface of the water or striking the bottom of the container-and an explosion follows. I recently filmed such explosions in my own microwave (low-quality movie (749KB), medium-quality movie (5.5MB)), or high-quality movie (16.2MB)). As you’ll hear in my flustered remarks after “Experiment 13,” I was a bit shaken up by the ferocity of the explosion I had triggered, despite every expectation that it would occur. After that surprise, you’ll notice that I became much more concerned about yanking my hand out of the oven before the fork reached the water. I recommend against trying this dangerous experiment, but if you must, be extremely careful and don’t superheat more than a few ounces of water. You can easily get burned or worse. For a reader’s story about a burn he received from superheated water in a microwave, touch here.

Here is a sequence of images from the movie of my experiment, taken 1/30th of a second apart: