Why is it so expensive to recycle plastic?

Why is it so expensive to recycle plastic?

Different plastics are handled differently for recycling. Thermosets, such as rubber in tires, cannot be melted and cannot be recycled. Only thermoplastics can be melted for true reuse. There are 6 common thermoplastics that are recycled. These are numbered 1 through 6 on their bottoms. Objects made from one of these plastics can be collected together, melted, and then reformed into new useful objects. Unfortunately, the melted and reformed plastic isn’t as pure as the original. The plastics manufacturers would rather clean up petroleum into petrochemicals and then make pure plastics than start with plastic objects, clean them, and reuse them. Because the recycler can’t control what was in the plastic objects, these objects cannot be used for critical applications such as food containers or plumbing. Thus most recycled plastic is used for less profitable applications. If the recycler could be absolutely sure that the plastic hadn’t been contaminated, some of it could be reused very easily. Plastic milk jugs could be reformed into plastic milk jugs over and over again.

How do covalent bonds work?

How do covalent bonds work?

When two atoms form a covalent bond, their total energy is reduced by their proximity. It thus takes energy to separate them. If that energy isn’t available, they will cling to one another indefinitely. The two ways in which they lower their total energy by being close are (1) electrostatic attraction and repulsion and (2) lower kinetic energy. Two atoms experience both attractive and repulsive forces as they approach one another. Their positively charged nuclei repel one another, their negatively charged electrons repel one another, but their nuclei attract their electrons. The nuclei never get very close and the electrons manage to stay relatively far apart, too. The dominant effect is an attraction between the electrons and the two nuclei. The result is a net attraction. The nearby atoms are pulled toward one another by these electric forces. The lower kinetic energy comes about because of quantum effects. The electrons travel about the nuclei as waves. When the atoms are far apart, the electrons must orbit their individual atoms. Because they are then confined to small domains, they must have short wavelengths. These waves must be short enough to fit properly into their small confines. Short wavelength objects have high kinetic energies (e.g. short wavelength light is x-rays and gamma rays). But when the atoms are touching, the electrons can spread out between both atoms. Their wavelengths increase and their kinetic energies diminish. These two effects (lowered electrostatic potential energy and lowered kinetic energy) reduce the total energy when the two atoms touch. The result is the covalent bond.

How does glue get objects to stick to it? Do molecules in the objects bind with …

How does glue get objects to stick to it? Do molecules in the objects bind with molecules in the glue?

Ideally, the glue would form strong covalent bonds with the material and then form countless strong bridges from one object to another. Unfortunately, getting the glue to form such strong bonds with a surface is rarely possible. Instead, the glue forms weaker hydrogen bonds or van der Waals with the surface and is not so firmly attached. The glue’s polymer molecules may also extend into the surface, in cracks and fissures to form a more sturdy attachment. Clearly, surface preparation can help the gluing process. Glue will bind more effectively to a porous, rough surface than to a very smooth, impermeable one.

How does the process of retreading a tire work?

How does the process of retreading a tire work?

Since a tire cannot be melted, it can’t simply be reformed into a new tire. Moreover, it contains lots of belting materials that would have to be removed and reinstalled in the new tire. So the only recycling technique available for tires is to replace the tread itself. They shave away the outside of the tire to remove any remaining tread (working carefully, so as not to damage the belts), and glue a new layer of unvulcanized rubber onto the outside of the tire. The tire is then placed in a mold and heated. This heating causes a chemical reaction known as vulcanization to occur in the new tread rubber. This vulcanization bonds all the rubber molecules together and also binds them to the original tire. If done correctly, the entire tire, old and new, becomes a single gigantic molecule and the chances of losing the tread while driving should be minimal. Furthermore, the mold forms a tread on the surface of the new rubber so that the tire is structurally very much like a new tire. However, poor retreading work or accumulated damage due to many retreading operations can produce a weak tire and allow the tread to tear away from the tire body. This separation usually occurs while the tire is spinning rapidly and the tension forces within the tire are maximized. Such separation accounts for the huge strips of tread material you often see on highways.

If a racquetball is one long strand of molecules, if you made a cut in the ball,…

If a racquetball is one long strand of molecules, if you made a cut in the ball, wouldn’t the whole ball fall apart?

A racquetball is made of vulcanized rubber. Rubber consists of countless molecules, each one of which is principally a long chain of carbon atoms, decorated with hydrogen and other atoms. It resembles of bowl of tiny spaghetti strands though each rubber molecule is much, much longer than it is thick. But simple rubber melts rather easily and becomes gooey when warm. To make it more durable, it must be vulcanized. During vulcanization, the individual rubber molecules are cross-linked to form a permanent network of coupled strands. They can’t move relative to one another, which is why the racquetball can’t melt. It can only burn when you heat it. So the whole racquetball is one giant molecule. If you cut it in half, you are slicing the molecule in half. It doesn’t crumble, it just has many of its bonds broken. That’s not a problem because bonds break and remake all the time in the molecules around us.

If nothing sticks to Teflon, then how does Teflon stick to a pan?

If nothing sticks to Teflon, then how does Teflon stick to a pan?

Working with Teflon is difficult in any case. The molecular chains are extremely long, typically 100,000 carbon atoms long. It does not melt easily (it is used for high temperature applications) and is a very viscous liquid even when it does melt. Teflon is attached to surfaces by sintering it from a powder. At a high enough temperature, the molecular chains begin to move about somewhat so that they bind together into a continuous material. They also enter pores and crevices in the surface and becomes wedged inside when it cools. With enough of its chains extending into the pan surface, the whole Teflon sheet is permanently attached to the pan.

If rubber cannot melt, how is it molded (vulcanized?) into tires, o-rings, gaske…

If rubber cannot melt, how is it molded (vulcanized?) into tires, o-rings, gaskets, and such? You answered this later in the lecture; sulfur is added to the rubber and then the things are molded, right?

Yes. Vulcanization is done with the object in its final form. The plastic is assembled while it is still thermoplastic; without the cross-links that render it unmeltable. It is then vulcanized into a single giant molecule; a thermoset. This vulcanization may be done with sulfur, as in car tires, or it may be some other reaction. In silicone rubber (e.g. bathtub chalking), the vulcanization occurs spontaneously in air. The polydimethyl siloxane molecules are treated at their ends so that they vulcanize in air, releasing acetic acid (the vinegar smell). The resulting thermoset silicone rubber is one giant molecule and cannot melt any more.