Where does the charge on the antenna come from?

Where does the charge on the antenna come from?

In the transmitting station, the moving charge is pumped back and forth between the ground and the antenna. The net charge in the vicinity of the station remains zero, but it is constantly being redistributed. Sometimes the antenna is positively charged and the ground is negatively charged and sometimes it’s the reverse. In the receiving station, the same may be true. But there are also hand-held receivers that do not touch the ground. In that case, the receiver is still neutral, but charge is being pushed back and forth along the antenna and tank so that when the antenna is positively charged, the bottom of the tank circuit itself is negatively charged.

How can an antenna be short and still work as well as a long one?

How can an antenna be short and still work as well as a long one?

The length of an antenna is very important. If the antenna is too short, the charges will reach its end too soon and the charge will not flow very smoothly back and forth in it. If the antenna is too long, the charges will not reach its end before it is time for them to reverse directions and some of the antenna will not be used (it will actually cause more trouble than help). Thus there is an ideal length for the antenna and this length depends on the frequency of the radio wave it is trying to create. But it is also possible to shorten an antenna by delaying the flow of charge to its ends. Adding a coil to the antenna (an inductor) will slow the flow of current through the antenna and make a short antenna behave like a longer antenna. Most portable AM radios use a coiled antenna that behaves as though it were much longer than its physical length. FM radios work best with antennas that are about 1 meter long.

Why do radio waves travel better at night?

Why do radio waves travel better at night?

AM radio waves travel remarkably long distances near dusk because of the behavior of the earth’s atmosphere. A layer in the upper atmosphere, the ionosphere, contains many electrically charged particles and it behaves like a poor electrical conductor. Its conductivity improves in the early evening. When low frequency radio waves encounter this conducting layer, it responds to them and reflects them just like a mirror reflects light. As a result, you can hear very distant radio stations as their waves bounce of the ionosphere. FM transmissions occur at high frequencies that are too fast for the ionosphere to reflect.