If a bird lands on a high-voltage wire, will it be injured?

A bird lands on an uninsulated 10,000 volt power line. Will it become extra crispy? — RKS, Texas

No. Birds do this all the time. What protects the bird is the fact that it doesn’t complete a circuit. It touches only one wire and nothing else. Although there is a substantial charge on the power line and some of that charge flows onto the bird when it lands, the charge movement is self-limiting. Once the bird has enough charge on it to have the same voltage as the power line, charge stops flowing. And even though the power line’s voltage rises and falls 60 times a second (or 50 times a second in some parts of the world), the overall charge movement at 10,000 volts just isn’t enough to bother the bird much. At 100,000 volts or more, the charge movement is uncomfortable enough to keep birds away, so you don’t see them landing on the extremely high-voltage transmission lines that travel across vast stretches of countryside.

The story wouldn’t be the same if the bird made the mistake of spanning the gap from one wire to another. In that case, current could flow through the bird from one wire to the other and the bird would run the serious risk of becoming a flashbulb. Squirrels occasionally do this trick when they accidentally bridge a pair of wires. Some of the unexpected power flickers that occur in places where the power lines run overhead are caused by squirrels and occasionally birds vaporizing when they let current flow between power lines.

Why do scantron-type tests only read #2 pencils? Can other pencils work?

Why do scantron-type tests only read #2 pencils? Can other pencils work? — MW, Montgomery, AL

The #2-pencil requirement is mostly historical. Because modern scantron systems can use all the sophistication of image sensors and computer image analysis, they can recognize marks made with a variety of materials and they can even pick out the strongest of several marks. If they choose to ignore marks made with materials other than pencil, it’s because they’re trying to be certain that they’re recognizing only marks made intentionally by the user. Basically, these systems can “see” most of the details that you can see with your eyes and they judge the markings almost as well as a human would.

The first scantron systems, however, were far less capable. They read the pencil marks by shining light through the paper and into Lucite light guides that conveyed the transmitted light to phototubes. Whenever something blocked the light, the scantron system recorded a mark. The marks therefore had to be opaque in the range of light wavelengths that the phototubes sensed, which is mostly blue. Pencil marks were the obvious choice because the graphite in pencil lead is highly opaque across the visible light spectrum. Graphite molecules are tiny carbon sheets that are electrically conducting along the sheets. When you write on paper with a pencil, you deposit these tiny conducting sheets in layers onto the paper and the paper develops a black sheen. It’s shiny because the conducting graphite reflects some of the light waves from its surface and it’s black because it absorbs whatever light waves do manage to enter it.

A thick layer of graphite on paper is not only shiny black to reflected light, it’s also opaque to transmitted light. That’s just what the early scantron systems needed. Blue inks don’t absorb blue light (that’s why they appear blue!), so those early scantron systems couldn’t sense the presence of marks made with blue ink. Even black inks weren’t necessarily opaque enough in the visible for the scantron system to be confident that it “saw” a mark.

In contrast, modern scantron systems used reflected light to “see” marks, a change that allows scantron forms to be double-sided. They generally do recognize marks made with black ink or black toner from copiers and laser printers. I’ve pre-printed scantron forms with a laser printer and it works beautifully. But modern scantron systems ignore marks made in the color of the scantron form itself so as not to confuse imperfections in the form with marks by the user. For example, a blue scantron form marked with blue ink probably won’t be read properly by a scantron system.

As for why only #2 pencils, that’s a mechanical issue. Harder pencil leads generally don’t produce opaque marks unless you press very hard. Since the early scantron machines needed opacity, they missed too many marks made with #3 or #4 pencils. And softer pencils tend to smudge. A scantron sheet filled out using a #1 pencil on a hot, humid day under stressful circumstances will be covered with spurious blotches and the early scantron machines confused those extra blotches with real marks.

Modern scantron machines can easily recognize the faint marks made by #3 or #4 pencils and they can usually tell a deliberate mark from a #1 pencil smudge or even an imperfectly erased mark. They can also detect black ink and, when appropriate, blue ink. So the days of “be sure to use a #2 pencil” are pretty much over. The instruction lingers on nonetheless.

One final note: I had long suspected that the first scanning systems were electrical rather than optical, but I couldn’t locate references. To my delight, Martin Brown informed me that there were scanning systems that identified pencil marks by looking for their electrical conductivity. Electrical feelers at each end of the markable area made contact with that area and could detect pencil via its ability to conduct electric current. To ensure enough conductivity, those forms had to be filled out with special pencils having high conductivity leads. Mr. Brown has such an IBM Electrographic pencil in his collection. This electrographic and mark sense technology was apparently developed in the 1930s and was in wide use through the 1960s.

When a device uses two batteries, why do they have to be place positive to negat…

When a device uses two batteries, why do they have to be place positive to negative? Are there any exceptions? – MS

Batteries are “pumps” for electric charge. A battery takes an electric current (moving charge) entering its negative terminal and pumps that current to its positive terminal. In the process, the battery adds energy to the current and raises its voltage (voltage is the measure of energy per unit of electric charge). A typical battery adds 1.5 volts to the current passing through it. As it pumps current, the battery consumes its store of chemical potential energy so that it eventually runs out and “dies.”

If you send a current backward through a battery, the battery extracts energy from the current and lowers its voltage. As it takes energy from the current, the battery adds to its store of chemical potential energy so that it recharges. Battery charges do exactly that: they push current backward through the batteries to recharge them. This recharging only works well on batteries that are designed to be recharged since many common batteries undergo structural damage as their energy is consumed and this damage can’t be undone during recharging.

When you use a chain of batteries to power an electric device, you must arrange them so that each one pumps charge the same direction. Otherwise, one will pump and add energy to the current while the other extracts energy from the current. If all the batteries are aligned positive terminal to negative terminal, then they all pump the same direction and the current experiences a 1.5 volt (typically) voltage rise in passing through each battery. After passing through 2 batteries, its voltage is up by 3 volts, after passing through 3 batteries, its voltage is up by 4.5 volts, and so on.

How fast do the electrons in copper flow when that copper is carrying electricit…

How fast do the electrons in copper flow when that copper is carrying electricity? — LH, North Hollywood

It turns out that the electrons in copper travel quite slowly even though “electricity” travels at almost the speed of light. That’s because there are so many mobile electrons in copper (and other conductors) that even if those electrons move only an inch per second, they comprise a large electric current. Picture the electrons as water flowing through a pipe or river and now consider the Mississippi River. Even if the Mississippi is flowing only inches per second, it sure carries lots of water past St. Louis each second.

The fact that electricity itself travels at almost the speed of light just means that when you start the electrons moving at one end of a long wire, the electrons at the other end of the wire also begin moving almost immediately. But that doesn’t mean that an electron from your end of the wire actually reaches the far end any time soon. Instead, the electrons behave somewhat like water in a long hose. When you start the water moving at one end, it pushes on water in front of it, which pushes on water in front of it, and so on so that water at the far end of the hose begins to leave the hose almost immediately. In the case of water, the motion proceeds forward at the speed of sound. In a wire, the motion proceeds forward at the speed of light in the wire (actually the speed at which electromagnetic waves propagate along the wire), which is only slightly less than the speed of light in vacuum.

Note for the experts: as one of my readers (KT) points out, the water-in-a-hose analogy for current-in-a-wire is far from perfect. Current in a wire flows throughout the wire, including at its surface, and the wire’s resistance to steady current flow scales as the cross-sectional area of the wire. In contrast, water in a hose only flows through the open channel inside the hose and the hose’s resistance to flow scales approximately as the fourth power of that channel’s diameter.

What is a superconductor?

What is a superconductor? — PG

A superconductor is a material that carries electric current without any loss of energy. Currents lose energy as they flow through normal wires. This energy loss appears as a voltage drop across the material—the voltage of the current as it enters the material is higher than the voltage of the current when it leaves the material. But in a superconductor, the current doesn’t lose any voltage at all. As a result, currents can even flow around loops without stopping. Currents are magnetic and superconducting magnets are based on the fact that once you get a current flowing around a loop of superconductor, it keeps going forever and so does its magnetism.

In the movie “Back to the Future,” Doc Brown completes an electrical circuit w…

In the movie “Back to the Future,” Doc Brown completes an electrical circuit with a bolt of lightning as the source and the “flux capacitor” as the load. In the process, he receives a shock. Would the “flux capacitor” still experience a flow of electrons if Doc Brown had provided a path to the earth? — BM, Akron, Ohio

While most of the “science” in that movie is actually nonsense, the use of lightning as a source of power has some basis in reality. The current in a lightning bolt is enormous, peaking at many thousands of amperes, and the voltages available are fantastically high. With so much current and voltage available, the flow of current during a lightning strike can be very complicated. Even though Doc Brown provided one path through which the lightning current could flow into the ground, he only conducted a fraction of the overall current. The remaining current flowed through the wire and into the “flux capacitor.” This branching of the current is common during a lightning strike and makes lightning particularly dangerous. You don’t have to be struck directly by lightning or to be in contact with the main conducting pathway between the strike and the earth for you to be injured. Current from the strike can branch out in complicated ways and follow a variety of unexpected paths to ground. You don’t want to be on any one of them. Doc Brown wasn’t seriously hurt because it was only a movie. In real life, people don’t recover so quickly.

How do rechargeable batteries get recharged?

How do rechargeable batteries get recharged?

You can recharge any battery by pushing charge through it backward (pushing positive charge from its positive terminal to its negative terminal). However, some batteries don’t take this charge well or heat up. The ones that recharge most effectively are those that can rebuild their chemical structures most effectively as they operate backward.

I understand that the speed of electricity varies with the conductor, but is sup…

I understand that the speed of electricity varies with the conductor, but is supposedly 2/3 the speed of light. I had thought the speed would equal the speed of light. Why isn’t it? — AP

Although electricity involves the movement of electrically charged particles through conducting materials, it can also be viewed in terms of electromagnetic waves. For example, programs that reach your home through a cable TV line are actually being carried by electromagnetic waves that travel in the cylindrical space between coaxial cable’s central wire and the tubular metal shield around it. These waves would travel at the speed of light, except that whenever charged particles in the wires interact with the passing waves, they introduce delays. The charged particles in the wires don’t respond as quickly as empty space does to changes in electric or magnetic fields, so they delay these changes and therefore slow down the waves. The materials that insulate the wires also influence the speed of the electricity by responding slowly to the changing fields. The fastest wires are ones with carefully chosen shapes and almost empty space for insulation. In general, the less the charges in the wire respond to the passing electromagnetic waves, the faster those waves can move.

I am doing a science fair project on conductors and insulators. What are some of…

I am doing a science fair project on conductors and insulators. What are some of the best and worst conductors of electricity? — LM

The best conventional conductors are silver, copper, gold, and aluminum. What makes them good conductors is that electrons move through them for relatively long distances without colliding with anything that wastes their energy. These materials become better conductors as their purities increase and as their temperatures decrease. A cold, near-perfect crystal is ideal, because all of the atoms are then neatly arranged and nearly motionless, and the electrons can move through them with minimal disruption. However, there is a class of even better conductors: the so-called “superconductors.” These materials allow electric current to travel through them will absolutely no loss of energy. The carriers of electric current are no longer simply independent electrons; they are typically pairs of electrons. Still, superconductivity appears because the moving charged particles can no longer suffer collisions that waste their energy-they move with perfect ease. We would be using superconductors everywhere in place of copper or aluminum wires if it weren’t for the fact that superconductors only behave that way at low temperatures.

As for the best insulators, I’d vote for good crystals of salts like lithium fluoride and sodium chloride (table salt), and covalently-bound substances like aluminum oxide (sapphire) or diamond. All of these materials are pretty nearly perfect insulators.