Ramps 1

Ramps

Ramps 2

Question:

Can a ball ever push downward on a table with a force greater than the ball's weight?

Ramps 3

Observations About Ramps

- · Lifting an object straight up is often difficult
- Pushing the object up a ramp is usually easier
- The ease depends on the ramp's steepness
- Shallow ramps require only gentle pushes
- · You seem to get something for nothing
- How does distance figure into the picture?

Ramps 4

Type of Force

- · Support force
 - Prevents something from penetrating surface
 - Points directly away from that surface

Ramps

Physics Concept

- Net Force
 - The sum of all forces on an object.
 - Determines object's acceleration.

Ramps 6

Newton's Third Law

For every force that one object exerts on a second object, there is an equal but oppositely directed force that the second object exerts on the first object. Ramps

Experiment:

If you push on a friend who is moving away from you, how will the force you exert on your friend compare to the force your friend exerts on you?

- 1. You push harder
- 2. Your friend pushes harder
- 3. The forces are equal in magnitude

Ramps

Forces Present Part 1:

- 1. On ball due to gravity (its weight)
- 2. On ball due to support from table
- 3. On table due to support from ball

All three forces have the same magnitude for the stationary ball

Ramps 9

Forces Present Part 2:

- 1. On ball due to gravity (its weight)
- 2. On ball due to support from table
- 3. On table due to support from ball

Ramps 1

Forces Present Part 3:

1. On earth due to gravity from the ball

Pair

Pair

- 2. On ball due to gravity from the earth
- 3. On ball due to support from table
- 4. On table due to support from ball
- Since the ball doesn't accelerate, 2 and 3 must cancel perfectly

Ramps 1

Question:

Can a ball ever push downward on a table with a force greater than the ball's weight?

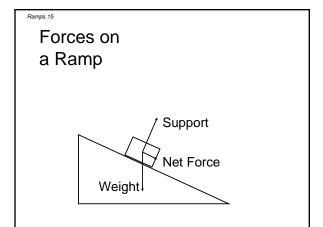
Ramps 1

Two Crucial Notes:

- While the forces two objects exert on one another must be equal and opposite, the net force on each object can be anything.
- Each force within an equal-but-opposite pair is exerted on a different object, so they don't cancel directly.

Ramps 1.

Physical Quantities


- Energy
 - A conserved quantity
 - The capacity to do work
- Work
 - The mechanical means of transferring energy
 - work = force · distance(where force and distance in same direction)

Ramps 1-

Work Lifting a Ball, Part 1

- Going straight up:
 - Force is large
 - Distance is small

work = force · distance

Pamne 16

Work Lifting a Ball, Part 2

- · Going up ramp:
 - Force is small
 - Distance is large

work = force · distance

Ramps 17

Work Lifting a Ball, Part 3

• Going straight up:

 $work = force \cdot distance$

· Going up ramp:

work = force · distance

• The work is the same, either way!

Ramps 1

Physics Concept

- · Mechanical Advantage
 - Doing the same amount of work
 - Redistributing force and distance

Ramps 19

Summary about Ramps

- Ramp partially supports object's weight
- Ramp exchanges force for distance
- Overall work done is unchanged