Spring Scales

Spring Scales 2

Question:

- A diver stands motionless at the end of a spring board, which bends downward. If her identical twin joins her, how far downward will the board then bend?
- The same amount.
- Twice as far.
- · Four times as far.

Spring Scales 3

Spring Scales 1

Observations About Spring Scales

- They move when you weigh things
- · They take a moment to settle down
- They weigh best when all is still
- The "zero" often drifts
- They must be positioned carefully
- They grow inaccurate with age

Spring Scales 4

How Much Is There?

- · How can you measure quantity?
 - Number
 - Length
 - Volume
 - Weight
 - Mass

Spring Scales 5

Mass as a Measure

- Pros:
 - Independent of measuring location
 - Measured directly by acceleration
- Cons:
 - Acceleration measurements are difficult

Spring Scales 6

Weight as a Measure

- Pros:
 - Proportional to mass (at one location)
 - Easier to measure than mass
- Cons:
 - Dependent on measuring location
 - Can't be measured directly
- Measured via an equilibrium technique

Spring Scales 7

Equilibrium

- An object in equilibrium
 - experiences zero net force
 - is not accelerating
- At equilibrium,
 - individual forces balance perfectly
 - an object at rest remains at rest
 - an object in motion coasts

Spring Scales 8

Weighing Via Equilibrium

- Use an upward support force to balance an object's downward weight
- · Attain equilibrium
- · Measure the support force
- The object's weight is equal in magnitude to the measured support force.

Spring Scales 9

A Free Spring

- A free spring adopts a certain length
- Its ends experience zero net force
- · Its ends are in equilibrium
- The spring is at its equilibrium length

Spring Scales 10

A Distorted Spring

- · Forces act on ends of a distorted spring
- These forces
 - act to restore the spring to equilibrium length
 - are called "restoring forces"
 - make the equilibrium length "stable"
 - are proportional to the distortion

Spring Scales 11

Hooke's Law

• The restoring force on the end of a spring is equal to a spring constant times the distance the spring is distorted. That force is directed opposite the distortion.

Restoring force = - Spring constant \cdot Distortion

Spring Scales 12

A Spring Scale

- To weigh an object with a spring scale
 - Support the object with a spring
 - Allow spring to distort to an equilibrium
 - Measure distortion of spring
 - Spring constant relates distortion to force
 - Report the force

Spring Scales 13

Question:

- A diver stands motionless at the end of a spring board, which bends downward. If her identical twin joins her, how far downward will the board then bend?
- The same amount.
- Twice as far.
- · Four times as far.

Spring Scales 14

Spring Scales and Acceleration

- Weight measurement requires equilibrium
- Without equilibrium,
 - spring force doesn't balance weight
 - "measurement" is meaningless
- An accelerating object is not at equilibrium
 - You must not bounce on a scale!
 - Wait for the scale to settle before reading!

Spring Scales 15

Summary about Spring Scales

- The spring stretches during weighing
- This stretch is proportional to the weight
- The scale measures the spring's stretch
- The scale reports weight based on stretch