How do long range metal detectors work?

How do long range metal detectors work? — AS

In general, metal detectors find metal objects by looking for their electromagnetic responses. For example, you can tell when an iron or steel object is nearby by waving a magnet around. If you feel something attracting the magnet, you can be pretty sure that there is a piece of iron or steel nearby. Similarly, if you wave a strong magnet rapidly across an aluminum or copper surface, you’ll feel a drag effect as the moving magnet causes electric currents to flow in the metal surface—electric currents are themselves magnetic.

Of course, a real metal detector is much more sensitive than your hands are, but it’s using similar principles to detect nearby metal. Most often, a metal detector uses a coil of wire with an alternating current in it to create a rapidly changing magnetic field around the coil. If that changing magnetic field enters a piece of nearby metal, the metal responds. If the metal is ferromagnetic—meaning that it has intrinsic magnetic order like iron or steel—it will respond strongly with its own magnetic field. If the metal is non-ferromagnetic—meaning that it doesn’t have the appropriate intrinsic magnetic order—it will respond more weakly with magnetic fields that are caused by electric currents that begin to flow through it.

In a short range metal detector, the detector looks for the direct interaction of its magnetic field and a nearby piece of metal. That nearby metal changes the characteristics of the detector’s wire coil in a way that’s relatively easy to detect. But in a longer-range metal detector, the electromagnetic coil must actually radiate an electromagnetic wave and then look for the reflection of this electromagnetic wave from a more distant piece of metal. That’s because the magnetic field of the coil doesn’t extend outward forever—it dies away a few diameters of the coil away from the coil itself. For the metal detector to look for metal farther away, it needs help carrying the magnetic field through space. By combining an electric field with the magnetic field, the long-range metal detector creates an electromagnetic wave—a radio wave—that travels independently through space. Electromagnetic waves reflect from many things, particularly objects that conduct electricity. So the long-range metal detector launches an electromagnetic wave and then looks for the reflection of that wave. This wave reflection technique is the basis for sonar (sound waves) and radar (radio waves), and it can be used to find metals deep in the ground. Unfortunately, the ground itself conducts electricity to some extent, so it becomes harder and harder to distinguish the reflections from metal from the reflections from other things in the ground.

Leave a Reply