How does a microwave oven defrost foods? Doesn’t it only work with water, not ic…

How does a microwave oven defrost foods? Doesn’t it only work with water, not ice?

In any frozen food, there are some water molecules that are relatively free to turn about. These molecules may be at the surfaces of ice crystals or sitting on the surface of food particles. These water molecules can absorb microwaves and heat. However, the heating is very uneven because as soon as any water crystal absorbs enough heat to melt, the resulting liquid water will begin to absorb microwaves much more strongly. That is why defrosting must be done slowly. Then the microwave deposited heat will have time to flow through the food and melt it uniformly. Otherwise, you can end up with boiling hot spots mixed together with frozen icy spots.

How do metal rods short out the microwaves?

How do metal rods short out the microwaves?

If you arrange a metal rod so that it’s parallel to a microwave’s electric field, the microwave will push electric charges up and down that rod. This moving charge will waste some of the microwave’s energy by creating heat in the rod. But the main effect will be that the rod will reflect or scatter the microwave. The moving charge will emit its own microwave and this new microwave will interfere with the original one.

How can microwaves heat something? Radio waves don’t warm things very much.

How can microwaves heat something? Radio waves don’t warm things very much.

The electric field of a microwave flips back and forth at just about the right frequency to have the largest effect on water molecules. The water molecules try to follow the reversing electric field and, in doing so, become hotter and hotter. Radio waves flip too slowly to have very much effect on water. Furthermore, the microwaves in an oven are far more intense than the radio waves that we’re used to have around us so that common radio waves just don’t do very much cooking.

Can microwaves be emitted to travel in one direction?

Can microwaves be emitted to travel in one direction?

Yes. Like all electromagnetic waves, microwaves can be focused and concentrated in a particular direction. That is exactly what microwave dish antennas (e.g., satellite dishes) do. At the transmitter, they focus the microwaves emitted by a smaller antenna so that those microwaves travel as a parallel beam. At the receiver, they focus the parallel beam of microwaves onto a smaller antenna. You can think of the microwaves as very long wavelength light waves, so that anything you can do with light (e.g., focus it, form images with it, or bend it with optical devices), you can also do with microwaves. The only problem is that the optical elements you use for microwaves must be larger, because the microwaves have longer wavelengths.

Are microwaves harmful to you? Is eating microwaved food harmful?

Are microwaves harmful to you? Is eating microwaved food harmful?

Microwaves can heat your body by adding thermal energy to the water molecules in you. This heating can be damaging if it’s not controlled. Most of your body is protected from slow heating because your blood carries heat away from any local hot spots so that you warm evenly. However there are a few places that aren’t cooled by your circulation and can heat up locally enough to denature the protein molecules and cause biological injury. The cornea of your eye is a good example. It can be heated and damaged because it’s not cooled well. That’s why you must be careful not to look into a strong beam of microwaves. As for microwaved food, the only effect of cooking with microwaves is hot food. There is no “radiation damage” or “radioactivity,” as there might be with x-ray or gamma radiation. Some foods should not be cooked in a microwave only because the uneven heating may allow certain parts to become too hot. Those parts may burn you when you eat them or they may suffer thermal damage that diminishes their nutritional value.

Are microwaves distributed unevenly in the oven? Why do manufacturers claim that…

Are microwaves distributed unevenly in the oven? Why do manufacturers claim that microwaves with turntables are more effective than microwaves without turntables?

As the microwaves bounce around the inside of the cooking chamber, they tend to interfere with one another. There are usually regions in which the waves that follow various paths almost cancel one another and regions in which the waves reinforce one another. These regions don’t cook food equally well. If the microwaves are canceled in one region, cooking will be slow there. If the microwaves reinforce one another in another region, cooking will be fast there. If you simply leave food in one place and try to cook it in the microwaves, the cooking will be uneven. However, if the food is rotated continuously, these good and bad cooking regions will be blurred away so that the food will all cook at about the same speed.

What is one doing when changing the brightness, contrast, and color adjustments …

What is one doing when changing the brightness, contrast, and color adjustments on a television?

The brightness control determines the maximum strength of the electron beam and thus the peak brightness of the phosphors on the screen. The contrast control determines the extent to which the electron beam current changes between bright regions and dim regions on the screen. If the contrast is high, then even a less-than-white spot in the image may produce full beam current and full brightness in the phosphors and a more-than-black spot in the image may be cast as full black (no beam at all). If the contrast is low, then almost the entire screen will be illuminated by a medium electron beam and the image have no full black or full white. The color adjustments control the relative intensities of the red, green, and blue guns. Because of the way color is encoded in the television signal, the traditional controls are hue and tint, which involve mixtures of red, green, and blue. All these controls involve adjustments to the voltages and currents in the electron guns (cathodes), grids, and anodes of the picture tube.

If you stand between the two satellites, would you have light on you?

If you stand between the two satellites, would you have light on you?

When two satellites beam their radio waves at you, you are exposed to both of those waves. A normal antenna would not be able to distinguish between them and it would be hard to receive the transmissions of one and not the other. But with a satellite dish, you can easily select the transmissions of one and exclude those of the other. The satellite dish is directional, meaning that it focuses and collects radio waves from a particular direction while ignoring those from other directions. With a satellite dish aimed at a particular satellite, you can receive only transmissions from that satellite.

If black is a high current from the television’s radio receiver and white is a l…

If black is a high current from the television’s radio receiver and white is a low current, why do you get a bright spot when you increase the flow of electrons at that instant. Isn’t white a bright spot?

Yes, white is created by a strong flow of electrons. There are two separate circuits here. The current from the receiver section of the television isn’t what is sent through the electron gun. Instead, that current controls the electron gun. When a large current arrives at the electron gun (actually the grid) from the receiver, the flow of electrons toward the screen is pinched off and a dark spot is created. When a small current arrives from the receiver, the electron beam remains intense and a bright spot is created.

How does the television camera record the picture?

How does the television camera record the picture?

Like the television picture tube, the camera generates a signal that indicates the brightnesses of individual spots one at a time. It first measures the brightness of light reaching it from the upper left hand spot, then the spot to its immediate right and so on horizontally across the field of view. It then moves down to a low horizontal line and repeats this sweep. It eventually records the light levels from the entire scene in front of it and begins again. It detects this light using an optical system that forms an image of the scene on a light sensitive surface. This surface may be part of an imaging vacuum tube (sort of a reverse picture tube), or it may be a semiconductor device that resembles a vast array of tiny photocells.