Is it true that gravity is stronger at the north pole than at the equator. Does …

Is it true that gravity is stronger at the north pole than at the equator. Does that mean that a person would be able to jump higher at the equator?

Yes. Because of its rotation, the earth isn’t quite spherical and people near the poles of the earth experience stronger gravity than at the equator. At the equator, they would experience an apparent weight that was 1% less than at the poles and would be able to jump higher as a result. The Olympic committee should take note.

If you lifted an object with a hanging scale on earth and it read 15 N, would it…

If you lifted an object with a hanging scale on earth and it read 15 N, would it read the same on Jupiter? What about the gravitational force pulling the object down? Wouldn’t that alter the reading on the scale? Would you have to calibrate another scale to measure mass on Jupiter?

No, the scale would not read the same on Jupiter, and there would be nothing wrong with the scale! On Jupiter, the object would simply weigh more than on earth. Its mass wouldn’t have changed and it would still contain the same number of atoms, but Jupiter would pull on it harder. As a result, the scale would have to pull upward on it harder and the scale would read a larger number of newtons. You wouldn’t want to recalibrate the scale because it would be doing its job: it would correctly report that the object weighed about 40 N.

If you hang a weight from a scale ten feet up and the weight descends 2 feet, is…

If you hang a weight from a scale ten feet up and the weight descends 2 feet, is the loss in gravitational potential energy equal to the elastic potential energy gained?

Not quite. When you first let go of the weight, it falls freely because the spring isn’t stretched and doesn’t exert any upward force on the weight. The spring won’t support the weight fully until the weight has fallen 2 feet. By then, the weight has acquired a lot of kinetic energy and it overshoots the 2-foot level. The weight begins to bounce up and down around that 2 foot point and takes a while to settle down. The weight is vibrating up and down because it has too much energy at the 2-foot point. Eventually, it converts its extra energy into thermal energy and becomes motionless at the 2-foot point. At that point, it has turned exactly 1/2 of the missing gravitational potential energy into elastic potential energy and the other 1/2 into thermal energy. This 50/50 conversion is a remarkable result related to the exact proportionality between the spring’s distortion and the force it exerts.

If a spring scale measures weight, what does a mass scale use to figure out mass…

If a spring scale measures weight, what does a mass scale use to figure out mass? Are weight and mass measured the same way?

A spring scale measures weight. It does this by reporting how much upward force it needs to exert on an object to keep that object from accelerating. Since this upward force exactly balances the object’s weight (assuming the object isn’t accelerating), the upward force reported by the scale is exactly equal to the object’s weight. If the scale reports that the object has a certain mass (in kilograms), then it is taking advantage of the fact that, near the earth’s surface, each kilogram of mass weighs 9.8 newtons. But it is still measuring weight and using the relationship between mass and weight to determine the object’s mass. If you were to move the “mass” scale to a new location, such as the moon’s surface, the scale would read incorrectly because the relationship between mass and weight would have changed.

How can you measure weight and/or mass through distance?

How can you measure weight and/or mass through distance?

With a spring scale, the distortion of the spring is proportional to how much force it is exerting. If you measure that distortion, you can determine how hard it is pulling or pushing on whatever is attached to it. If it’s supporting the weight of an object, you can determine that object’s weight by measuring how far the spring distorts while supporting it.

Why is the frictional force on a wagon’s wheel in the opposite direction from th…

Why is the frictional force on a wagon’s wheel in the opposite direction from the frictional force on a car’s wheel?

When you pull a wagon forward, friction from the ground starts the wheel turning and it does this by pushing backward on the bottom of the wheel. Friction is thus preventing the wheel from skidding across the pavement. When you step on a car’s accelerator, the car’s engine starts the wheel turning and friction from the ground pushes forward on the bottom of the wheel to prevent the wheel from skidding across the pavement. In the first case, friction is trying to help the wheel to turn while in the second case friction is trying to keep the wheel from turning. That’s why the forces (and the resulting torques) on the wheel are in opposite directions for the two cases.

Why is it that we can use energy without doing work? Where does this energy go? …

Why is it that we can use energy without doing work? Where does this energy go? For example, you could push on a wall until your arms fell off, but you wouldn’t have done any work.

When you are pushing on something without doing any work, your energy is being converted directly into thermal energy inside your body. Your muscles are inefficient and they convert food energy into thermal energy whenever they are under tension. It’s like a car, which uses gasoline even when it’s stopped at the light. The engine keeps running but it does no work. Similarly, if you simply burned your cereal in your breakfast bowl, you would turn its energy directly into thermal energy without doing any useful work. Your body is also able to burn up that food energy and create thermal energy, albeit a little less visibly.

Why are tires filled with air instead of something less likely to go flat?

Why are tires filled with air instead of something less likely to go flat?

This is an interesting question with several answers. First, a solid rubber tire would have a huge mass and would require consider work to accelerate. Because it rotates as the car moves, a tire stores twice as much kinetic energy as the other parts of the cars. By reducing the mass of the tires, the car reduces the amount of energy it must put into the tires to get them moving and the amount of energy it must remove from the tires to stop them from turning.

Secondly, a solid rubber tire would be so hard that it would give the car a very rough ride. The air in the tires cushions the car against many of the rough spots it drives over. Without the air cushion, the wheels and axles would bound up and down with every pebble in the road.

Lastly, a solid rubber tire would be very expensive. The materials used in a tire are expensive and a tire’s cost should be roughly proportional to its weight. Since a solid tire would weigh much more than an air-filled one, it would also cost much more. Its tread would still wear out, so it wouldn’t last any longer than an air-filled tire.

Where does energy go when you try to push a heavy object and it doesn’t move? Th…

Where does energy go when you try to push a heavy object and it doesn’t move? Thermal energy isn’t made, so why do people get tired?

While it’s true that there is no thermal energy made by static friction, since the object doesn’t slide, your body can still make thermal energy directly. You get tired because your muscles must turn useful food energy into thermal energy whenever they are under tension. If you are doing work, they also convert food energy into that work, but even when they aren’t doing work, they still convert food energy into thermal energy.

What’s going on with the wheels when a car accelerates?

What’s going on with the wheels when a car accelerates?

As a car heads forward, its freely turning wheels begin to rotate. The torque that starts them rotating comes from static friction with the ground. The ground pushes backward on the bottoms of the wheels to keep them from sliding and this backward frictional force exerts a torque on the wheels. They begin to rotate so that their bottom surfaces head backward and their top surfaces head forward.

The car’s powered wheels turn for a different reason: they are driven by a torque from the car’s engine. As you step on the accelerator, the engine exerts a torque on the wheels and they begin to turn. They would skid backward across the ground where it not for static friction between the wheels and the ground. This static friction opposes the skidding by exerting a forward force on the bottom surface of the wheels. This static frictional force produces a torque on the wheels and that torque partly balances the torque from the engine. The wheels don’t skid and they’re angular velocities increase relatively slowly. However, the forward frictional force on the wheel’s bottom surface isn’t balanced elsewhere in the car and the car experiences a forward net force. The car accelerates forward.