What would happen if a magnifying glass is set at the end of a telescope? How wo…

What would happen if a magnifying glass is set at the end of a telescope? How would the stars appear?

You could place the magnifying glass at one of two spots: at the entrance to the telescope or at the eyepiece of the telescope. If you put it at the entrance, it would bend the light before it had a chance to reach the main optic for the telescope. The effect would be to increase the light bending ability of the main optic and reduce the lens’s focal length. This change would make it difficult to focus the telescope on distant objects, such as stars. The images of these distant objects would form too close to the main optic and you would have trouble observing them through the telescope’s eyepiece. But very nearby objects form real images farther from the main optic. The magnifying glass would help the main optic form real images of very nearby objects. It would act as a close-up lens. That is what close-up lens attachments for cameras or even cheap reading glasses do: they help the camera lens or your eye form an image of very nearby objects. On the other hand, a magnifying glass held over the eyepiece of a telescope would increase the power of the telescope. You would have to adjust the focus of the telescope because the added magnifying glass will reduce the effective focal length of the eyepiece. The new super eyepiece will have to be placed closer to the real image formed by the main optic of the telescope. When it is place properly, it will give you a very highly magnified view of that real image, so you will see a highly magnified view of the stars.

What is the difference between real images and virtual images?

What is the difference between real images and virtual images?

A real image is a pattern of light in space that you can touch or put a piece of paper in. When you insert the paper in this light pattern, it appears just like the scene that created it, although it is typically flipped upside-down. A virtual image is an image that you cannot touch. As you look into the optic that creates this virtual image, you can see the image as though it were a pattern of light in space, but that pattern of light is located on the opposite side of the optic, where you cannot touch it. Subsequent optical devices (including the lens of your eye) can study this virtual image and form new images of it, but you can’t put a piece of film in the virtual image itself.

What is the difference between object distance and focal length?

What is the difference between object distance and focal length?

The object distance is simply a measure of the distance between the object and the lens. The image distance is a measure of the distance between the lens and the image that it forms. A positive number for the image distance means that a real image forms. A negative number for the image distance means that a virtual image forms (on the same side of the lens as the object). The image distance depends on both the object distance and the focal length of the lens. The focal length of the lens is a characteristic of the lens itself and doesn’t change as the object and image distances change. The focal length is equal to the image distance when the object is very, very distant (e.g. a star). A positive focal length lens (a converging lens) forms a real image of the star at a distance from the lens equal to its focal length. A negative focal length lens (a diverging lens) forms a virtual image of the star at a distance from the lens equal to its focal length.

What happened to the Hubble mirror?

What happened to the Hubble mirror?

The mirror of the Hubble space telescope was ground with the aid of a flawed measuring device. Although the mirror was perfectly ground, it was given the wrong curvature and thus did not form a clear image at its focus. Light from one star that hit different points on the mirror did not converge to a single point on the imaging chip. To correct for this problem, the astronauts inserted a corrective optic into the path of the light. This refractive lens compensates for the incorrect convergence of the light so that it reaches a single point on the imaging chip. However, because it is a refractive optic, it cannot pass all wavelengths of light. Any light that is absorbed by the refractive optic is no longer measurable with the telescope.

Diffraction: I would have thought that the waves wouldn’t go through the screen …

Diffraction: I would have thought that the waves wouldn’t go through the screen because the wave was too long to recognize the holes in it. How did the light go through the screen?

When I sent laser light through a fine screen, it formed an interesting diffraction pattern on a distant wall. The holes in the screen were small, but not nearly as small as a wavelength of light. The light had no trouble going through these holes, but it did suffer diffraction effects. Because the wave passed through many separate holes, these waves interfered with one another and created the complicated pattern on the wall.

Why is film ruined when it is exposed to light?

Why is film ruined when it is exposed to light?

Photographic film chemically records information about the light that it has absorbed. Normally, this light was projected on it by a lens and formed a clear, sharp pattern of the scene in front of the camera. However, if light strikes the film uniformly, the information recorded on the film will have nothing to do with an image. The entire sheet of film will record intense exposure to light and will have no structure on its chemical record.

Why do people in flash pictures have “red eye”? How do cameras try to solve th…

Why do people in flash pictures have “red eye”? How do cameras try to solve that problem?

When light from the flash illuminates people’s eyes, that light focuses onto small spots on their retinas. Most of the light is absorbed, by a small amount of red light reflects. Because the lens focused light from the flash onto a particular spot on the retina, the returning light is focused directly back toward the flash. The camera records this returning red light and eyes appear bright red. To reduce the effect, some flashes emit an early pulse of light. People’s pupils shrink in response to this light and allow less light to go into and out of their eyes. Professional photographers often mount their flashes a foot or more from the lens so that the back-reflected red light that returns toward the flash misses the lens.

Why do camera flashes make eyes red and why do two flashes correct this problem?

Why do camera flashes make eyes red and why do two flashes correct this problem?

The retinas of your eyes appear reddish when you look at them with white light. The red eye problem occurs because light from the flash passes through the lens of your eye, strikes the retina (which allows you to see the flash), and reflects back toward the camera. This reflection is mostly red light and it is directed very strongly back toward the camera. The camera captures this red reflection very effectively and so eyes appear red. The double flash is meant to get the irises of your eyes to contract (as they do whenever your eyes are exposed to bright light or you are startled or excited). The first flash causes your irises to contract so that less light from the second flash can pass into and out of your eyes. Unfortunately, this trick doesn’t work all that well.

Why are there various types of film (speed, purposes, etc.)?

Why are there various types of film (speed, purposes, etc.)?

The different speeds of film have to do with how light sensitive the film emulsion is. A portion of the surface of a high-speed film will register exposure to light when only a few particles of light (photons) reach it. In contrast, a low speed film requires more photons per square millimeter to undergo the chemical changes of exposure.

While high speed film can take pictures with less light than low speed film, there is a trade-off. High-speed films are grainier and have less resolution than low speed films. Thus photographs that you would like to enlarge should be taken with relatively slow film.

Is the eye similar to a camera?

Is the eye similar to a camera?

Yes, your eye is exactly like a camera, except that the real image forms on your light sensitive retina rather than on a sheet of film. The lens bends light to a focus on the retina. If you are nearsighted and can only see nearby objects clearly, then your lens is too strong and bends light too much. Light from a distant object focuses before reaching your retina. If you are farsighted and can only see distant objects clearly, then your lens is too weak and bends light too little. Light from a nearby object doesn’t reach a focus by the time it strikes your retina. It would focus beyond your retina, if it could continue on through space.