If the Fermi level is the highest energy level used by an electron, how can elec…

If the Fermi level is the highest energy level used by an electron, how can electrons shift to conduction levels that are at energies above the Fermi level? — PH

The Fermi level is the highest energy level occupied when all the electrons have as little energy as possible. That situation occurs only when all the electrons are paired two to a level and the levels are filled all the way from the lowest energy level up to the Fermi level. At any reasonable temperature and in the presence of light or other energy sources, some of the electrons will have been shifted out of their normal levels and into levels above the Fermi level. The Fermi level doesn’t change when these shifts occur—it’s defined before the electrons shift.

How does the light emission of Wint-O-Green Lifesavers work? If you bite them, t…

How does the light emission of Wint-O-Green Lifesavers work? If you bite them, they give off light, but what are the chemicals involved and how does it work? — KA, Davis, CA

This phenomenon is the result of tiny electric sparks that occur when sucrose crystals in the Lifesaver crack as they are exposed to severe stresses. A separation of electric charge occurs between the two sides of the fracture tip and an electric discharge occurs through the air separating those two sides. The light that you see is produced by this electric discharge.

To understand how this charge separation occurs, we must look at how crystals respond to stress. Many crystalline materials are microscopically asymmetric, meaning that their molecules form orderly arrangements that aren’t entirely symmetric. To visualize such an arrangement, consider a collection of shoes: an orderly arrangement of left shoes can’t be symmetric because a left shoe isn’t its own mirror image—you can’t built a fully symmetric system out of asymmetric pieces. Like left shoes, sucrose molecules (the molecules in table sugar) are asymmetric so that a crystal of sucrose is also asymmetric.

Whenever you squeeze a crystal, exposing it to stress, its electric charges rearrange somewhat. In a symmetric crystal, this microscopic rearrangement doesn’t have any overall consequences. But in an asymmetric crystal such as sucrose, the microscopic rearrangement can produce a large overall rearrangement of electric charges and huge voltages can appear between different parts of the crystal. The most familiar such case is in the spark lighters for gas grills, where a stressed asymmetric crystal creates large sparks. In a Wint-O-Green Lifesaver, the large build-ups of charge cause small sparks that produce the light you see.

What happens when matter and anti-matter collide? Do they just destroy each othe…

What happens when matter and anti-matter collide? Do they just destroy each other? I thought that matter couldn’t be created or destroyed? – S

As Einstein’s famous formula points out, mass and energy are equivalent in many respects. In most situations, mass is conserved and so is energy. But at the deepest level, it’s actually the sum of those two quantities that’s conserved. When matter and anti-matter collide, they often annihilate one another and their mass/energy is converted into other forms. For example, when an electron and an anti-electron (a positron) collide, they can annihilate to produce two or more photons of light. There is no fundamental law that prevents matter from being created or destroyed but there is a fundamental law that mass/energy must be conserved. In this case, the masses of the electron and positron become energy in the massless photons. Overall, mass/energy has been conserved but what was originally mass has become energy. The fact that when matter and anti-matter annihilate, the product is usually energy, makes this mixture attractive as a possible super-rocket fuel. But don’t hold your breath; anti-matter is incredibly difficult to make or store.

How can we measure magnetic fields or magnetic potentials of solvent atoms that …

How can we measure magnetic fields or magnetic potentials of solvent atoms that reside interstitially inside solid solutes? — DR, Tampa, FL

You can measure the magnetic fields in which certain atoms reside with the help of nuclear magnetic resonance (NMR). This technique examines the magnetic environment of the atom’s nucleus by determining how much energy it takes to change the orientation of the nucleus. Since the nucleus is itself magnetic, it tends to align with any magnetic field—like a compass. The stronger that magnetic field, the harder it is to flip the nucleus into the wrong direction.

How do Oven Cooking Bags work? I know they are made of heat resistant nylon resi…

How do Oven Cooking Bags work? I know they are made of heat resistant nylon resin, but can you explain what that means? — HY, Halifax, Nova Scotia

There are two broad classes of plastics: (1) thermoplastics that can melt, at least in principle, and (2) thermosets that can’t melt under any circumstances. Thermoplastics consist of very long but separable molecules and common thermoplastics include polyethylene (milk containers), polystyrene (Styrofoam cups), Nylon (hosiery), and cellulose (cotton and wood fiber). Thermosets consist of very long molecules that have been permanently cross-linked to one another to form one giant molecule. Common thermosets include cross-linked alpha-helix protein (hair) and vulcanized rubber (car tires).

Most common plastic items are made from thermoplastics because these meltable plastics can reshaped easily. But different thermoplastics melt at different temperatures, depending on how strongly their long molecules cling to one another. The plastic in an Oven Cooking Bag is almost certainly a thermoplastic form of Nylon, but one that melts at such a high temperature that it doesn’t change shape in the oven. It’s possible that the Nylon has been cross-linked to form a thermoset, so that it can’t melt at all, but I wouldn’t expect this to be the case.

How does ultrasound detect cracks or imperfections in metal? Is this to do with …

How does ultrasound detect cracks or imperfections in metal? Is this to do with density or is it just reflecting off surfaces? — PA, Essex, UK

Like all waves, ultrasound reflects whenever it passes from one material to another and experiences a change in speed (or more accurately, a change in impedance). Any inhomogeneity in a metal is likely to change the speed of sound in that metal and will cause some amount of sound reflection. With the proper instruments emitting sound and detecting the reflected sound, it’s possible to image the imperfections. The same technique is used in medical ultrasound to image organs or fetuses, and even to image the insides of the earth.

Is it possible to eat a microwave while you eat food that was cooked in the micr…

Is it possible to eat a microwave while you eat food that was cooked in the microwave oven? – PTW

Not one that came from the microwave oven. Microwaves are all around us and are completely innocuous. Your body emits weak microwaves all the time, as part of its thermal radiation! Like light, microwaves don’t remain still in objects so you can’t eat one that was put in the food by the oven.

If the condenser in a microwave is bad, what is the most likely reaction the mic…

If the condenser in a microwave is bad, what is the most likely reaction the microwave generator will exhibit? — IF, Bakersfield, CA

According to a reader, most microwave oven capacitors have fuses in them so that when they fail, they usually become open (they lose all of their ability to store separated charge and behave as a simple open circuit). You’d need a capacitor checker to find this open circuit within the capacitor.

How can we clean the microwave oven? – PTW

How can we clean the microwave oven? – PTW

Since the cooking chamber of a microwave oven doesn’t get hot, there is no way to make a “self-cleaning” microwave oven. Instead, you have to clean it by hand with a sponge and perhaps a little soapy water. As long as you get the soap or any other cleaning agents out, you can clean the cooking chamber just as you’d clean the top of a stove.