What is the principle of the Trinitron Sony TV system? — JPD, Spiennes, Belgium
To form a color image, a color television illuminates a dense pattern of tiny spots—some red, some green, and some blue. By mixing various amounts of these three primary colors of light, the color television can make us perceive any color. But the television must control the amounts of these three colors at each spot on the screen, a very difficult task. A typical color television does this by shining three separate beams of electrons through a mask with holes in it and onto a screen that’s covered with tiny phosphor spots. Because the three beams approach the mask at different angles, they illuminate different portions of the screen after passing through the holes. Thus the “blue” beam only illuminates spots of blue phosphor, the “red” beam illuminates red spots, and the “green” beam illuminates green spots.
However, the Sony Trinitron system uses a line mask rather than one containing holes and the phosphors are coated onto the screen in stripes rather than spots. Again, three separate electron beams are used but they now illuminate specific stripes of phosphor rather than spots of phosphor. The advantage of the stripe approach is that there is more active phosphor on the screen (fewer dark places between spots) so the image is brighter.