What is the difference between a single-phase electric motor and a three phase motor? Does that make one of them more efficient, better, or longer lasting than the other? — EJ, Houston, TX
To keep the center component or “rotor” of an electric motor spinning, the magnetic poles of the electromagnets surrounding the rotor must rotate around it. That way, the rotor will be perpetually chasing the rotating magnetic poles. With single-phase electric power, producing that rotating magnetic environment isn’t easy. Many single-phase motors use capacitors to provide time-delayed electric power to some of their electromagnets. These electromagnets then produce magnetic poles that turn on and off at times that are delayed relative to the poles of the other electromagnets. The result is magnetic poles that seem to rotate around the rotor and that start it turning. While the capacitor is often unnecessary once the rotor has reached its normal operating speed, the starting process is clearly rather complicated in a single phase motor.
In a three phase motor, the complicated time structure of the currents flowing through the three power wires makes it easy to produce the required rotating magnetic environment. With the electromagnets surrounding the rotor powered by three-phase electricity, the motor turns easily and without any starting capacitor. In general, three phase motors start more easily and are somewhat more energy efficient during operation than single phase motors.