Why are batteries different sizes (e.g., AAA, AA, C, and D) if they all have 1.5 volts?
Those different alkaline battery sizes are chemically equivalent, which is why they all produce the same voltage rises for currents passing through them from their negative terminals to their positive terminals. The same chemical reactions allow each of these batteries to pump the charges, giving each coulomb of positive charge about 1.5 joules of energy—a voltage rise of 1.5 joules-per-coulomb or 1.5 volts. Where these batteries differ is in how many charges they can pump each second—their maximum currents—and in how many charges they can pump before running out of chemical potential energy—their total stored energy. The bigger cells (C and D) can handle far more current than the smaller cells (AAA and AA) and they also contain more stored energy.