Is it possible to charge batteries using static electricity? Can lightning or atmospheric charges be stored in a capacitor and then released into a cell for charging? — JM, Lafayette, NT
Yes, static electricity has energy associated with it and that energy can be used to charge batteries, at least in principle. Static electricity is literally stationary separated electric charges—essentially separated charges stored on capacitor-like surfaces. As you suggest, it may be easiest to transfer these separated charges into a real capacitor and then to use this charged capacitor to recharge an electrochemical cell. Whether such a procedure can be carried out efficiently and in a cost-effective manner isn’t clear to me. The charges involved in lightning have so much energy per charge—so much voltage—that they’re hard to use for anything. Even the charges that you accumulate when you rub your feet on a wool carpet on a cold, dry winter day acquire an enormous amount of energy per charge. To charge most batteries, you need lots of low energy charges, not the small numbers of high-energy charges that are typical of static electricity. Using this tiny current of high-energy charges to charge a battery is equivalent to trying to fill a swimming pool with water from a high-pressure car-washing nozzle—too little water under too much pressure. You can do it, but there are better ways.