How does one find out the speed of a quark? Is it 7000 times the speed of light? — D
It seems that quarks are forever trapped inside the particles they comprise—no one has ever seen an isolated quark. But inside one of those particles, the quarks move at tremendous speeds. Their high speeds are a consequence of quantum mechanics and the uncertainty principle—whenever a particle (such as a quark) is confined to a small region of space (i.e. its location is relatively well defined), then its momentum must be extremely uncertain and its speed can be enormous. In fact, a substantial portion of the mass/energy of quark-based particles such as protons and neutrons comes from the kinetic energy of the fast-moving quarks inside them.
But despite these high speeds, the quarks never exceed the speed of light. As a massive particle such as a quark approaches the speed of light, its momentum and kinetic energy grow without bounds. For that reason, even if you gave all the energy in the world to a single quark, its speed would still remain just a hair less than the speed of light.