What is an event horizon? — KRH
An event horizon is the surface around a black hole from which not even light can escape. But to make it clearer what that statement means, consider first what happens to the light from a flashlight that’s resting on the surface of a large planet. Light is affected by gravity—it falls just like everything else. The reason you never notice this fact is that light travels so fast that it doesn’t have time to fall very far. But suppose that the gravity on the planet is extremely strong. If the flashlight is aimed horizontally, the light will fall and arc downward just enough that it will hit the surface of the planet before escaping into space. To get the light to leave the planet, the flashlight must be tipped a little above horizontal.
If the planet’s gravity is even stronger, the flashlight will have to be tipped even more above horizontal. In fact, if the gravity is sufficiently strong, light can only avoid hitting the planet if the flashlight is aimed almost straight up. And beyond a certain strength of gravity, even pointing the flashlight straight up won’t keep the light from hitting the planet’s surface.
When that situation occurs, an event horizon forms around the planet and forever separates the planet from the universe around it. Actually, the planet ceases to exist as a complex object and is reduced to its most basic characteristics: mass, electric charge, and angular momentum. The planet becomes a black hole. and light emitted at or within this black hole’s event horizon falls inward so strongly that it doesn’t escape. Since nothing can move faster than light, nothing else can escape from the black hole’s event horizon either.
The nature of space and time at the event horizon are quite complicated and counter-intuitive. For example, an object dropped into a black hole will appear to spread out on the event horizon without ever entering it. That’s because, to an outside observer, time slows down in the vicinity of the event horizon. By that, I mean that it takes an infinite amount of our time for an object to fall through that event horizon. But the object itself doesn’t experience a change in the flow of time. For it, time passes normally and it zips right through the event horizon.
Finally, event horizons and the black holes that have them aren’t truly black—quantum mechanical fluctuations at the event horizon allow black holes to emit particles and radiation. This “Hawking radiation,” discovered by Stephen Hawking about 25 years ago, means that black holes aren’t truly black. Nonetheless, objects that fall into an event horizon never leave intact.