Since a typical commercial jetliner cruises at around 30,000 feet (higher than M…

Since a typical commercial jetliner cruises at around 30,000 feet (higher than Mt. Everest), where the air is very rarified, is there a mechanism to concentrate the air around the engine intake? — P

There certainly is such a mechanism. The air at a jetliner’s cruising altitude is much too thin to support life so it must be compressed before introducing it into the airplane’s passenger cabin. The compressed air is actually extracted from an intermediate segment of the airplane’s jet engines. In the course of their normal operations, these engines collect air entering their intake ducts, compress that air with rotary fans, inject fuel into the compressed air, burn the mixture, and allow the hot, burned gases to stream out the exhaust duct through a series of rotary turbines. The turbines provide the power to operate the compressor fans. Producing the stream of exhaust gas is what pushes the airplane forward.

But before fuel is injected into the engine’s compressed air, there is a side duct that allows some of that compressed air to flow toward the passenger cabin. So the engine is providing the air you breathe during a flight.

There is one last interesting point about this compressed air: It is initially too hot to breathe. Even though air at 30,000 feet is extremely cold, the act of compressing it causes its temperature to rise substantially. This happens because compressing air takes energy and that energy must go somewhere in the end. It goes into the thermal energy of the air and raises the air’s temperature. Thus the compressed air from the engines must be cooled by air conditioners before it goes into the passenger cabin.

I noticed that in your discussions of salted water in cooking, you never mention…

I noticed that in your discussions of salted water in cooking, you never mentioned the main reason why people add salt to water: it raises the boiling temperature of the water so that foods cook faster — L

You are right that adding salt to water raises the water’s boiling temperature. Contrary to one’s intuition, adding salt to water doesn’t make it easier for the water to boil, it makes it harder. As a result, the water must reach a higher temperature before it begins to boil. Any foods you place in this boiling salt water (e.g. eggs or pasta) find themselves in contact with somewhat hotter water and should cook faster as a result. That’s because most cooking is limited by the boiling temperature of water in or around food and anything that lowers this boiling temperature, such as high altitude, slows most cooking while anything that raises the boiling temperature of water, such as salt or the use of a pressure cooker, speeds most cooking. However, it takes so much salt to raise the boiling temperature of water enough to affect cooking times that this can’t be the main motivation for cooking in salted water. By the time you’ve salted the water enough to raise its boiling temperature more than a few degrees, you’ve made the water too salty for cooking. It’s pretty clear that salting your cooking water is basically a matter of taste, not temperature.

If two planets were really close together and you were between them, how would t…

If two planets were really close together and you were between them, how would the gravitational force affect you? — MB & Class

If you were directly between the two planets, their gravitational forces on you would oppose one another and at least partially cancel. Which planet would exert the stronger force on you would depend on their relative masses and on your distances from each of them. If one planet pulled on you more strongly than the other, you would find yourself falling toward that planet even though the other planet’s gravity would oppose your descent and prolong the fall. However, there would also be a special location between the planets at which their gravitational forces would exactly cancel. If you were to begin motionless at that point in space, you wouldn’t begin to fall at all. While the planets themselves would move and take the special location with them, there would be a brief moment when you would be able to hover in one place.

But there is something I’ve neglected: you aren’t really at one location in space. Because your body has a finite size, the forces of gravity on different parts of your body would vary subtly according to their exact locations in space. Such variations in the strength of gravity are normally insignificant but would become important if you were extremely big (e.g. the size of the moon) or if the two planets you had in mind were extremely small but extraordinarily massive (e.g. black holes or neutron stars). In those cases, spatial variations in gravity would tend to pull unevenly on your body parts and might cause trouble. Such uneven forces are known as tidal forces and are indeed responsible for the earth’s tides. While the tidal forces on a spaceship traveling between the earth and the moon would be difficult to detect, they would be easy to find if the spaceship were traveling between two small and nearby black holes. In that case, the tidal forces could become so severe that they could rip apart not only the spaceship and its occupants, but also their constituent molecules, atoms, and even subatomic particles.

I have been trying to get information on what causes strange gravity areas to ex…

I have been trying to get information on what causes strange gravity areas to exist…Walking on walls, water rolling uphill, etc. There are a number of such places advertised in the United States and elsewhere but are they optical illusions or for real? — MW

These purported gravitational anomalies are just illusions. Because gravity is a relatively weak force, enormous concentrations of mass are required to create significant gravitational fields. Since it takes the entire earth to give you your normal weight, the mass concentration needed to cancel or oppose the earth’s gravitation field in only one location would have to be extraordinary. While objects capable of causing such bizarre effects do exist elsewhere in our universe (e.g. black holes and neutron stars), there fortunately aren’t any around here. As a result, the strength of the gravitational field at the earth’s surface varies less than 1% over the earth’s surface and always points almost exactly toward the center of the earth. Any tourist attraction that claims to have gravity pointing in some other direction with some other strength is claiming the impossible.