After a party at work, a friend tied a helium balloon to his car’s gearshift lev…

After a party at work, a friend tied a helium balloon to his car’s gearshift lever and drove off. As he started driving forward, the balloon first went forward and then backward. That’s not what happens to everything else. Why does it happen for the helium balloon? — S

The helium balloon is the least dense thing in the car and is responding to forces exerted on it by the air in the car. To understand this, consider what happens to you, the air, and finally the helium balloon as the car first starts to accelerate forward.

When the car starts forward, inertia tries to keep all of the objects in the car from moving forward. An object at rest tends to remain at rest. So the car must push you forward in order to accelerate you forward and keep you moving with the car. As the car seat pushes forward on you, you push back on the car seat (Newton’s third law) and dent its surface. Your perception is that you are moving backward, but you’re not really. You’re actually moving forward; just not quite as quickly as the car itself.

The air in the car undergoes the same forward acceleration process. Its inertia tends to keep it in place, so the car must push forward on it to make it accelerate forward. Air near the front of the car has nothing to push it forward except the air near the back of the car, so the air in the front of the car tends to “dent” the air in the back of the car. In effect, the air shifts slightly toward the rear of the car. Again, you might think that this air is going backward, but it’s not. It’s actually moving forward; just not quite as quickly as the car itself.

Now we’re ready for the helium balloon. Since helium is so light, the helium balloon is almost a hollow, weightless shell that displaces the surrounding air. As the car accelerates forward, the air in the car tends to pile up near the rear of the car because of its inertia. If the air can push something out of its way to get more room near the rear of the car, it will. The helium balloon is that something. As inertia causes the air to drift toward the rear of the accelerating car, the nearly massless and inertialess helium balloon is squirted toward the front of the car to make more room for the air. There is actually a horizontal pressure gradient in the car’s air during forward acceleration, with a higher pressure at the rear of the car than at the front of the car. This pressure gradient is ultimately what accelerates the air forward with the car and it’s also what propels the helium balloon to the front of the car.

Finally, when the car is up to speed and stops accelerating forward, the pressure gradient vanishes and the air returns to its normal distribution. The helium balloon is no longer squeezed toward the front of the car and it floats once again directly above the gear shift.

One last note: OGT from Lystrup, Denmark points out that when you accelerate a glass of beer, the rising bubbles behave in the same manner. They move toward the front of the glass as you accelerate it forward and toward the back of the glass as you bring it to rest.

My third grade art class was wondering what color things would be if there was n…

My third grade art class was wondering what color things would be if there was no sunlight? — Mrs. P’s class

Most objects make no light of their own and are visible only because they reflect some of the light that strikes them. Without sunlight (or any other light source), these passive objects would appear black. Black is what we “see” when there is no light reaching our eyes from a particular direction. The only objects we would see would be those that made their own light and sent it toward our eyes.

The fact that we see mostly reflected light makes for some interesting experiments. A red object selectively reflects only red light; a blue object reflects only blue light; a green object reflects only green light. But what happens if you illuminate a red object with only blue light? The answer is that the object appears black! Since it is only able to reflect red light, the blue light that illuminates it is absorbed and nothing comes out for us to see. That’s why lighting is so important to art. As you change the illumination in an art gallery, you change the variety of lighting colors that are available for reflection. Even the change from incandescent lighting to fluorescent lighting can dramatically change the look of a painting or a person’s face. That’s why some makeup mirrors have dual illumination: incandescent and fluorescent.

The one exception to this rule that objects only reflect the light that strikes them is fluorescent objects. These objects absorb the light that strikes them and then emit new light at new colors. For example, most fluorescent cards or pens will absorb blue light and then emit green, orange, or red light. Try exposing a mixture of artwork and fluorescent objects to blue light. The artwork will appear blue and black: blue wherever the art is blue and black wherever the art is either red, green, or black. But the fluorescent objects will display a richer variety of colors because those objects can synthesize their own light colors.

Please explain the forces that allow one team to win a Tug-O-War contest.

Please explain the forces that allow one team to win a Tug-O-War contest. — ES

If we neglect the mass of the rope, the two teams always exert equal forces on one another. That’s simply an example of Newton’s third law—for every force team A exerts on team B, there is an equal but oppositely directed force exerted by team B on team A. While it might seem that these two forces on the two teams should always balance in some way so that the teams never move, that isn’t the case. Each team remains still or accelerates in response to the total forces on that team alone, and not on the teams as a pair. When you consider the acceleration of team A, you must ignore all the forces on team B, even though one of those forces on team B is caused by team A. There are two important forces on team A: (1) the pull from team B and (2) a force of friction from the ground. That force of friction approximately cancels the pull from the team B because the two forces are in opposite horizontal directions. As long as the two forces truly cancel, team A won’t accelerate. But if team A doesn’t obtain enough friction from the ground, it will begin to accelerate toward team B. The winning team is the one that obtains more friction from the ground than it needs and accelerates away from the other team. The losing team is the one that obtains too little friction from the ground and accelerates toward the other team.

How is a diode different from a piece of ordinary wire?

How is a diode different from a piece of ordinary wire? — R

An ordinary wire will carry electric current in either direction, while a diode will only carry current in one direction. That’s because the electric charges in a wire are free to drift in either direction in response to electric forces but the charges in a diode pass through a one-way structure known as a p-n junction. Charges can only approach the junction from one side and leave from the other. If they try to approach from the wrong side, they discover that there are no easily accessible quantum mechanical pathways or “states” in which they can travel. Sending the charges toward the p-n junction from the wrong side can only occur if something provides the extra energy needed to reach a class of less accessible quantum mechanical states. Light can provide that extra energy, which is why many diodes are light sensitive—they will conduct current in the wrong direction when exposed to light. That is the basis for many light sensitive electronic devices and for most photoelectric or “solar” cells.

Can you please tell me why two different amounts of heated water cool at the sam…

Can you please tell me why two different amounts of heated water cool at the same rate? My second grade daughter and I took boiling water from the same pot and placed it in two different size Pyrex bowls. We measured the temperature of the water in each bowl every five minutes. The temperature drop was the same for each amount of water. — JT

The amount of hot water that’s cooling doesn’t necessarily determine which bowl of water will cool fastest. That depends on how quickly each gram of the hot water loses heat, a rate that depends both on how much hotter the water is than its surroundings and on how that water is exposed to those surroundings. In general, hot water loses heat through its surface so the more surface that’s exposed, the faster it will lose heat. But surface that’s exposed to air will lose heat via evaporation and will be particularly important in cooling the water.

In answer to your question, my guess is that the larger bowl of water also exposes much more of that water to the air. Although the larger bowl had more water in it, it allowed that water to exchange heat faster with its environment. If the larger bowl contained twice as much water but let that water lose heat twice as fast, the two bowls would maintain equal temperatures. If you want to see the effect of thermal mass in slowing the loss of temperature, you’ll need to control heat loss. Try letting equal amounts of hot water cool in two identical containers—one wrapped in insulation and covered with clear plastic wrap (to prevent evaporation) and one open to the air. You’ll see a dramatic change in cooling rate. And if you want to compare unequal amounts of water, use two indentical containers that are only exposed to the cooler environment through a controlled amount of surface area. For example, try two identical insulated cups, one full of water and one only half full. If both lose heat only through their open tops, the full cup should cool more slowly than the half full cup.