How does a Tesla coil work? — EK
Popular in movies as a source of long glowing sparks, a Tesla coil is basically a high-frequency, very high-voltage transformer. Like most transformers, the Tesla coil has two circuits: a primary circuit and a secondary circuit. The primary circuit consists of a capacitor and an inductor, fashioned together to form a system known as a “tank circuit”. A capacitor stores energy in its electric field while an inductor stores energy in its magnetic field. When the two are wired together in parallel, their combined energy sloshes back and forth from capacitor to inductor to capacitor at a rate that’s determined by various characteristics of the two devices. Powering the primary of the Tesla coil is a charge delivery system that keeps energy sloshing back and forth in the tank circuit. This delivery system has both a source of moderately high voltage electric current and a pulsed transfer system to periodically move charge and energy to the tank. The delivery system may consist of a high voltage transformer and a spark gap, or it may use vacuum tubes or transistors.
The secondary circuit consists of little more than a huge coil of wire and some electrodes. This coil of wire is located around the same region of space occupied by the inductor of the primary circuit. As the magnetic field inside that inductor fluctuates up and down in strength, it induces current in the secondary coil. That’s because a changing magnetic field produces an electric field and the electric field surrounding the inductor pushes charges around and around the secondary coil. By the time the charges in the secondary coil emerge from the coil, they have enormous amounts of energy; making them very high voltage charges. They accumulate in vast numbers on the electrodes of the secondary circuit and push one another off into the air as sparks.
While most circuits must form complete loops, the Tesla coil’s secondary circuit doesn’t. Its end electrodes just spit charges off into space and let those charges fend for themselves. Many of them eventually work their ways from one electrode to the other by flowing through the air or through objects. But even when they don’t, there is little net build up of charge anywhere. That’s because the direction of current flow through the secondary coil reverses frequently and the sign of the charge on each electrode reverses, too. The Tesla coil is a high-frequency device and its top electrode goes from positively charged to negatively charge to positively charged millions of times a second. This rapid reversal of charge, together with reversing electric and magnetic fields means that a Tesla coil radiates strong electromagnetic waves. It therefore interferes with nearby radio reception.
Finally, it has been pointed out to me by readers that a properly built Tesla coil is resonant—that the high-voltage coil has a natural resonance at the same frequency that it is being excited by the lower voltage circuit. The high-voltage coil’s resonance is determined by its wire length, shape, and natural capacitance.