If a home looses some of its power during a power outage and the lights shine dim, will it burn up the motor in the refrigerator? Will it damage other appliances (TV, VCR. stereo. etc)? Should the main disconnect be shut off? — J, Ohio
Power outages come in a variety of types, one of which involves a substantial decrease in the voltage supplied to your home. The most obvious effect of this voltage decrease is the dimming of the incandescent lights, which is why it’s called a “brownout.” The filament of a lightbulb is poor conductor of electricity, so keeping an electric charge moving through it steadily requires a forward force. That forward force is provided by the voltage difference between the two wires: the one that delivers charges to the filament and the one that collects them back from the filament. As the household voltage decreases, so does the force on each charge in the filament. The current passing through the filament decreases and the filament receives less electric power. It glows dimly.
At the risk of telling you more than you ever want to know, I’ll point out that the filament behaves approximately according to Ohm’s law: the current that flows through it is proportional to the voltage difference between its two ends. The larger that voltage difference, the bigger the forces and the more current that flows. This ohmic behavior allows incandescent lightbulbs to survive decreases in voltage unscathed. They don’t, however, do well with increases in voltage, since they’ll then carry too much current and receive so much power that they’ll overheat and break. Voltage surges, not voltage decreases, are what kill lightbulbs.
The other appliances you mention are not ohmic devices and the currents that flow through them are not simply proportional to the voltage supplied to your home. Motors are a particularly interesting case; the average current a motor carries is related in a complicated way to how fast and how easily it’s spinning. A motor that’s turning effortlessly carries little average current and receives little electric power. But a motor that is struggling to turn, either because it has a heavy burden or because it can’t obtain enough electric power to overcome starting effects, will carry a great deal of average current. An overburdened or non-starting motor can become very hot because it’s wiring deals inefficiently with the large average current, and it can burn out. While I’ve never heard of a refrigerator motor dying during a brownout, it wouldn’t surprise me. I suspect that most appliance motors are protected by thermal sensors that turn them off temporarily whenever they overheat.
Modern electronic devices are also interesting with respect to voltage supply issues. Electronic devices operate on specific internal voltage differences, all of which are DC — direct current. Your home is supplied with AC — alternating current. The power adapters that transfer electric power from the home’s AC power to the device’s DC circuitry have evolved over the years. During a brownout, the older types of power adapters simply provide less voltage to the electronic devices, which misbehave in various ways, most of which are benign. You just want to turn them off because they’re not working properly. It’s just as if their batteries are worn out.
But the most modern and sophisticated adapters are nearly oblivious to the supply voltage. Many of them can tolerate brownouts without a hitch and they’ll keep the electronics working anyway. The power units for laptops are a case in point: they can take a whole range of input AC voltages because they prepare their DC output voltages using switching circuitry that adjusts for input voltage. They make few assumptions about what they’ll be plugged into and do their best to produce the DC power required by the laptop.
In short, the motors in your home won’t like the brownout, but they’re probably protected against the potential overheating problem. The electronic appliances will either misbehave benignly or ride out the brownout unperturbed. Once in a while, something will fail during a brownout. But I think that most of the damage is down during the return to normal after the brownout. The voltages bounce around wildly for a second or so as power is restored and those fluctuations can be pretty hard some devices. It’s probably worth turning off sensitive electronics once the brownout is underway because you don’t know what will happen on the way back to normal.