Suppose you have a metal sphere in vacuum and you begin putting electric charge on that sphere. Neglecting possible discharges, how much charge can the sphere store? An unlimited amount? — BC
By asking me to “neglect possible discharges,” you’re asking me to neglect what actually happens. There will be a discharge, specifically a phenomenon known as “field emission”. Neglect that discharge, then yes, the sphere can in principle store an unlimited amount of charge. But on route to infinity, I will have had to ignore several other exotic discharges and then the formation of a black hole.
What will really happen is a field emission discharge. The repulsion between like charges will eventually become so strong that those charges will push one another out of the metal and into the vacuum, so that charges will begin to stream outward from the metal sphere.
Another way to describe that growing repulsion between like charges involves fields. An electric charge is surrounded by a structure in space known as an electric field. An electric field exerts forces on electric charges, so one electric charge pushes on other electric charges by way of its electric field.
As more and more like charges accumulate on the sphere, their electric fields overlap and add so that the overall electric field around the sphere becomes stronger and stronger. The charges on the sphere feel that electric field, but they are bound to the metal sphere by chemical forces and it takes energy to pluck one of them away from the metal.
Eventually, the electric field becomes so strong that it can provide the energy needed to detach a charge from the metal surface. The work done by the field as it pushes the charge away from sphere supplies the necessary energy and the charge leaves the sphere and heads out into the vacuum. The actually detachment process involves a quantum physics phenomenon known as tunneling, but that’s another story.
The amount of charge the sphere can store before field emission begins depends on the radius of the sphere and on whether the charge is positive or negative. The smaller that radius, the faster the electric field increases and the sooner field emission starts. It’s also easier to field-emit negative charges (as electrons) than it is to field-emit positive charges (as ions), so a given sphere will be able to hold more positive charge than negative charge.