Is it possible for a ball to fall to earth at a different angle from the one at which it rose?
If the ground is level and there were no air resistance, the answer would be no. The flight of the ball is perfectly symmetric. It rises to a maximum height in a parabolic arc and then returns to the ground as the continuation of that same parabolic arc.
However, if the ground isn’t level, then the angle it hits the ground at might be different. For example, if you toss a ball almost horizontally off a cliff, it will hit the ground almost vertically. Horizontal and vertical are two very different directions.
Air resistance also tends to slow a ball’s motion and it’s particularly effective at stopping the downfield component of its velocity. Gravity makes sure that the ball descends quickly, but there is no force to keep the ball moving downfield against air resistance. The result is that balls tend to drop more sharply toward the ground. When you hit a baseball into the outfield, it may leave your bat at a shallow angle but it will drop pretty vertically toward the person catching it.
Finally, if the ball is spinning, it can obtain special forces from the air called lift forces. These forces can deflect its path in complicated ways and are responsible for curve balls in baseball, slices and hooks in golf, and topspin effects in tennis.