How do helicopters work? — KH, Holland, MI
The wings of a normal airplane obtain upward lift forces from the air as the airplane moves forward through the air. That’s because the shape and angle of the wings is such that air flows faster over the top surface of each wing than under the bottom surface of that wing and the air pressure above the wing drops below the air pressure below the wing. Each wing experiences a net upward pressure force and these upward forces are enough to support the weight of the plane.
A helicopter spins its wings around in a circle so that they move through the air even when the helicopter itself is stationary. Normally, these rotating wings are called blades. Again, the air flows faster over each blade than beneath it and there is a net upward pressure force on each blade. These upward forces support the helicopter and they also allow it to tilt itself—by adjusting the angle of each blade as the blades turn, the helicopter can obtain twists from the air so that it tilts one way or the other. Once the helicopter has tilted, it can use some of the lift force from its blades to push it horizontally so that it accelerates forward, backward, or toward the side.