If you microwaved bean plant seeds over a period of weeks while they were growin…

If you microwaved bean plant seeds over a period of weeks while they were growing, would they grow faster or longer, and if they would, would that be due to the heat or some effect of the microwave radiation? – DS

Microwaving the bean plant seeds would be no different from heating them, except that the distribution of temperatures in the seeds and soil might be a little different from what you would get if you simply used a space heater. The particles or photons of ultraviolet light, X-rays, or gamma rays have enough energy to cause chemical changes in organic molecules and can induce mutations in living organisms. However, the photons of microwaves have so little energy that all they can do is heat living things. The most likely result of microwaving the bean plant seeds will be that the seeds will overheat and won’t grow at all. You’ll have bean stew.

My mother owns a microwave oven that is about 20 years old. It looks like new an…

My mother owns a microwave oven that is about 20 years old. It looks like new and has always been well taken care of. However, I was wondering whether it is still safe to use. Should I have it tested for leakage? — KE, Milwaukee, WI

As long as it still cooks, it’s probably fine. Leakage of microwaves can only occur if the cooking chamber has holes in its metal walls. These walls include the metal grid over the front window and the seals around the door. If the metal grid is intact and the door still appears to close properly, the oven shouldn’t leak any more microwaves now than it did 20 years ago. However, to set your mind at ease, you can have it tested or test it yourself. www.comforthouse.com sells a simple microwave leak tester for $30. You can probably find similar devices at local appliance stores or, for a more accurate and reliable test, take your microwave oven to a service shop for inspection with an FDA certified meter. [Note added 1/10/97: I have finally found one microwave oven that leaks enough that a simple tester identifies it as dangerous—it’s the microwave oven in my laboratory and I’ve moved it around frequently and taken it apart several times for my classes. Evidently, I damaged its door hinges during my experiments because the door now sags a bit and doesn’t seal properly. The tester worked nicely in finding the leaks.]

Where does the white go when the snow melts? – JM

Where does the white go when the snow melts? – JM

To start with, light slows down when it moves from air to ice and speeds up when it moves from ice to air. That’s because the electric charges in matter can delay a light wave and slow it down. Since electric charges are more concentrated in ice than they are in air, light travels more slowly in ice than it does in air. Next, some light reflects whenever light changes speed. That’s why a glass windowpane reflects some light from both its front and back surfaces. Similarly, light reflects from each surface of an ice crystal. Finally, snow is a jumbled heap of ice crystals. These clear crystals partially reflect light in all different directions like billions of tiny mirrors. The result is a white appearance. You see this exact same effect when you look at white sand, granulated salt, granulated sugar, clouds, fog, white paint, and so on. Each of these materials consists of tiny, clear objects that partially reflect light in all directions. Since they reflect all colors of light equally and spread that light in all direction equally, they appear white.

When the snow melts and becomes water, it stops having all those tiny surfaces to partially reflect light. Instead, it has only its top surface and this surface continues to partially reflect light. That’s why you see reflections in the top of a puddle.

Do regular fluorescent lights emit ultraviolet light? If so, how does the ultrav…

Do regular fluorescent lights emit ultraviolet light? If so, how does the ultraviolet level compare to what we would receive if we were outside? — GF, Barstow, CA

While the electric discharge in the tube’s mercury vapor emits large amounts of short wavelength ultraviolet light, virtually all of this ultraviolet light is absorbed by the tube’s internal phosphor coating and glass envelope. As a result, a fluorescent lamp emits relatively little ultraviolet light. I think that the ultraviolet light level under fluorescent lighting is far less than that of outdoor sunlight.

What is the composition of the phosphors used in fluorescent light bulbs? – M

What is the composition of the phosphors used in fluorescent light bulbs? – M

The exact composition depends on the color type of the bulb, with the most common color types being cool white, warm white, deluxe cool white, and deluxe warm white. In each case, the phosphors are a mixture of crystals that may include: calcium halophosphate, calcium silicate, strontium magnesium phosphate, calcium strontium phosphate, and magnesium fluorogermanate. These crystals contain impurities that allow them to fluoresce visible light. These impurities include: antimony, manganese, tin, and lead.

How does a telephone switching system work? Why was it so hard to trace telephon…

How does a telephone switching system work? Why was it so hard to trace telephone calls? In movies we see people pulling wires in order to trace the origin of a call. – AZ

Before the advent of electronic telephone switching systems, the automatic switching was done by electromechanical relays. These remarkable devices were essentially 10-position rotary switches that were turned by a series of electric pulses—the same pulses that were produced by the rotary dial of a telephone. When you dialed a “5”, your telephone produced a series of 5 brief pulses of electric current and one of these relays advanced 5 positions before stopping. Each number that you dialed affected a different relay so that your called was routed through one relay for each digit in the number that you called. To trace a called, someone had to follow the wires from relay to relay in order to determine what position each relay was in. From those positions, they could determine what number had been dialed. The first few digits of the telephone number determine which exchange (which local switching system) was being called, so those first relays were located in the caller’s telephone exchange building. The last few digits determine which number in the answerer’s exchange was being called, so those relays were located in the answerer’s telephone exchange. As you can imagine, finding your way through all those relays and wires in at least two different buildings was quite a job.

If E=mc2 and we know light exists, why is it that light doesn’t have …

If E=mc2 and we know light exists, why is it that light doesn’t have infinite mass and consequently why aren’t we all squashed? – M

The equation that you present is a simplification of the full relationship between energy, mass, momentum, and the speed of light, and is really only appropriate for stationary massive particles. In it, E is the particle’s energy, m is the particle’s rest mass, and c is the speed of light. Since light has no rest mass, the previous equation is simply not applicable to it. I should note that this equation is sometimes used to describe moving massive particles, in which case the m is allowed to increase to reflect the increasing energy of the moving particle. But the use of this equation for moving particles and the redefinition of mass as something other than rest mass often leads to confusion.

A better way to deal with moving particles, particularly massless particles, is to incorporate momentum into the problem. The full equation, correct for any particle, is E2=m2c4+p2c2. In this equation, E is energy, m is the rest mass of the particle (if any), p is the momentum of the particle (if any), and c is the speed of light. While light has no rest mass, it does have momentum and it’s this momentum that gives light an energy. Light travels along at the speed of light with a finite momentum and a finite energy. On the other hand, the momentum of a massive particle increases without limit as the particle approaches the speed of light and so does the particle’s energy. Thus massive particles can’t ever reach the speed of light.

Could you slow down the molecules to cool food quickly instead of heating it up?

Could you slow down the molecules to cool food quickly instead of heating it up?

Heat naturally flows from hotter objects to colder objects. As a result, you can heat food by putting it in hotter surroundings and cool food by putting it in colder surroundings. However, you can also heat food by converting an ordered form of energy into thermal energy, right inside the food. For example, microwaves can penetrate the food and their energy can become thermal energy inside the food, speeding up the cooking process.

However, there is no analogous way to reach inside the food and extract its thermal energy. You must wait for the thermal energy inside the food to drift to its surface and to be transferred to the colder surroundings. This requirement is the result of the laws of thermodynamics, which govern the interconversions of work and heat. While it’s easy to turn mechanical work into heat (just rub your hands together), it’s very difficult to turn heat into work. Because of this difficulty, thermal energy must usually be transferred elsewhere. You can’t build a “microwave refrigerator” that turns thermal energy into microwaves inside the food.

How can glass be shattered with sound?

How can glass be shattered with sound? — JI, Rapid City, SD

When sound shatters glass, it breaks the glass in the usual way: by distorting the glass to its breaking point. Whenever glass is bent too far, a crack propagates into the glass from its surface (usually at a defect) and the glass tears. For sound to cause this tearing process, the sound must distort the glass substantially. An extremely loud sound can distort the glass to its breaking point in a single motion. For example, an explosion shatters windows when a surge in air pressure (which you hear as a very loud “pop” sound) exerts so much force on those windows that they bend and break.

However, a moderately loud tone can also break certain glass objects by pushing on those objects rhythmically until they distort beyond their breaking points. To understand how that’s possible, recall that you can get a child swinging strongly on a playground swing either by giving the child one hard push or by giving the child many carefully timed gentle pushes. The gentle pushes transfer energy to the child via a mechanism called resonant energy transfer—the child is exhibiting a natural resonance and you are using that resonance to transfer energy to the child a little bit at a time.

While most glass objects exhibit only very weak natural resonances and are therefore extremely difficult to break via resonant energy transfer, a good crystal wineglass is resonant enough to be broken by a loud tone. You can hear the appropriate tone by flicking the wineglass with your finger. If the wineglass emits a clear bell-like tone, you will be able to break that wineglass by exposing the wineglass to a loud version of that same tone. When the wineglass is exposed to this tone, it begins to vibrate in its natural resonance. Each rise and fall in air pressure associated with the tone adds energy to the vibrating wineglass until its surface is distorting wildly. If the tone is loud enough and its pitch is exactly right, the wineglass will distort a remarkable amount and it may shatter. I know from experience with this effect that the distortion a crystal wineglass can undergo without shattering is amazing—it usually won’t break until it’s upper lip is almost as oval-shaped as an egg. Finding the right tone and holding that tone accurately enough and loudly enough requires sophisticated equipment. Few humans have any chance of breaking a wineglass because the pitch accuracy and volume needed are beyond the abilities of all but the most remarkable opera singers. However, Enrico Caruso was apparently able to do this trick with a wineglass held directly in front of his mouth. Note also that normal window glass and normal drinking glasses are made from soft forms of glass that exhibit no strong resonances—if you tap them, you hear only a dull “thunk” sound, not a bell-like tone. As a result, you can’t break them with tones.

How are light and sound the same? How are they different?

How are light and sound the same? How are they different? — JS, Binghamton, NY

There are so many answers to these questions that I’ll have to pick and choose. For their similarities, I’ll note that they’re both disturbances that travel through space and that both have wavelengths and frequencies. Sound is a pressure disturbance in the air (or in another material) and consists of compressions and rarefactions that travel outward from their origin. The distance between adjacent regions of compression (or rarefaction) is the sound’s wavelength and the number of compressed regions that pass by a particular point each second is the sound’s frequency (or pitch). Light is an electromagnetic disturbance in space itself, although materials that are present in that space can alter its characteristics somewhat. It consists of electric and magnetic fields that travel outward as waves from their origin. The distance between adjacent regions of maximum electric field (or magnetic field) in one direction is the light’s wavelength and the number of regions in which the electric field points maximally in a particular direction that pass by a particular point each second is the light’s frequency (or color). I hope that you can see some of the similarities in these descriptions.

As for differences, sound is a longitudinal wave—meaning that the air involved in the pressure fluctuations moves back and forth in the direction of the wave’s travel. Thus if sound is moving from left to right, the air is also fluctuating back and forth from left to right. In contrast, light is a transverse wave—meaning, that the electric and magnetic fields involved in the wave fluctuate back and forth at right angles to the direction of the wave’s travel. Thus if light is moving from left to right, the electric and magnetic fields associated with it are fluctuating either up and down or toward you and away from you (or both). Another difference is that sound travels about 300 meters per second and its speed depends on the speed of the air through which it travels. Light, on the other hand, travels about 300,000 kilometers per second and its speed in vacuum (empty space) is absolutely constant. The speed of light is one of the fundamental constants of the universe.