You must be busy since last night’s broadcast (Superheated Water Produced in Mic…

You must be busy since last night’s broadcast (Superheated Water Produced in Microwave Ovens on ABC Primetime 3/15/2001). Very, very scary as we have certainly done exactly what was shown. I have 3 little girls who love to “cook” their own soups, heat their dad’s coffee water, etc. in the microwave. This report terrified me. I am grateful no harm has come to them. My question is if we strictly use microwaveable plastic bowls, ceramic mugs, or other heavy mixing type bowls and avoid the glass, is the potential for the explosion still there?

I’m afraid that there’s no easy answer to this question. You can use a microwave oven to superheat water in any container that doesn’t assist bubble formation. How a particular container behaves is hard for me to say without experimenting. I’d heat a small amount of water (1/2 cup or less) in the container and look at it through the oven’s window to see if the water boils nicely, with lots of steam bubbles streaming upward from many different points on the inner surface of the container. The more easily water boils in the container, the less likely it is to superheat when you cook it too long. (If you try this experiment, leave the potentially superheated water in the closed microwave oven to cool!)

Glass containers are clearly the most likely to superheat water because their surfaces are essentially perfect. Glasses have the characteristics of frozen liquids and a glass surface is as smooth as… well, glass. When you overheat water in a clean glass measuring cup, your chances of superheating it at least mildly are surprisingly high. The spontaneous bubbling that occurs when you add sugar, coffee powder, or a teabag to microwave-heated water is the result of such mild superheating. Fortunately, severe superheating is much less common because defects, dirt, or other impurities usually help the water boil before it becomes truly dangerous. That’s why most of us avoid serious injuries.

However, even non-transparent microwaveable containers often have glass surfaces. Ceramics are “glazed,” which means that they are coated with glass for both sealing and decoration. Many heavy mixing bowls are glass or glass-ceramics. As you can see, it’s hard to get away from trouble. I simply don’t know how plastic microwaveable containers behave when heating water; they may be safe or they may be dangerous.

If you’re looking for a way out of this hazard, here are my suggestions. First, learn to know how long a given amount of liquid must be heated in your microwave in order to reach boiling and don’t cook it that long. If you really need to boil water, be very careful with it after microwaving or boil it on a stovetop instead. My microwave oven has a “beverage” setting that senses how hot the water is getting. If the water isn’t hot enough when that setting finishes, I add another 30 seconds and then test again. I never cook the water longer than I need to. Cooking water too long on a stovetop means that some of it boils away, but doing the same in a microwave oven may mean that it becomes dangerously superheated. Your children can still “cook” soup in the microwave if they use the right amount of time. Children don’t like boiling hot soup anyway, so if you figure out how long it takes to heat their soup to eating temperature and have them cook their soup only that long, they’ll never encounter superheating. As for dad’s coffee water, same advice. If dad wants his coffee boiling hot, then he should probably make it himself. Boiling water is a hazard for children even without superheating.

Second, handle liquids that have been heated in a microwave oven with respect. Don’t remove a liquid the instant the oven stops and then hover over it with your face exposed. If the water was bubbling spasmodically or not at all despite heavy heating, it may be superheated and deserves particular respect. But even if you see no indications of superheating, it takes no real effort to be careful. If you cooked the water long enough for it to reach boiling temperature, let it rest for a minute per cup before removing it from the microwave. Never put your face or body over the container and keep the container at a safe distance when you add things to it for the first time: powdered coffee, sugar, a teabag, or a spoon.

Finally, it would be great if some entrepreneurs came up with ways to avoid superheating altogether. The makers of glass containers don’t seem to recognize the dangers of superheating in microwave ovens, despite the mounting evidence for the problem. Absent any efforts on their parts to make the containers intrinsically safer, it would be nice to have some items to help the water boil: reusable or disposable inserts that you could leave in the water as it cooked or an edible powder that you could add to the water before cooking. Chemists have used boiling chips to prevent superheating for decades and making sanitary, nontoxic boiling sticks for microwaves shouldn’t be difficult. Similarly, it should be easy to find edible particles that would help the water boil. Activated carbon is one possibility.

Last night’s report wasn’t meant to scare you away from using your microwave oven or keep you from heating water in it. It was intended to show you that there is a potential hazard that you can avoid if you’re informed about it. Microwave ovens are wonderful devices and they prepare food safely and efficiently as long as you use them properly. “Using them properly” means not heating liquids too long in smooth-walled containers.

I left a spoon in my food and I put it in the microwave by accident. Is it dange…

I left a spoon in my food and I put it in the microwave by accident. Is it dangerous to eat the food after it was put into the microwave with a metal object. Does it have any radiation? Could it cause cancer? – SK, Santa Monica, California

The spoon will have essentially no effect at all on the food. Metal left in the microwave oven during cooking will only cause trouble if (a) it is very thin or (b) it has sharp edges or points. The microwaves push electric charges back and forth in metal, so if the metal is too thin, it will heat up like the filament of a light bulb and may cause a fire. And if the metal has sharp edges or points, charges may accumulate on those sharp spots and then leap into space as a spark. But because your spoon was thick and had rounded edges, the charges that flowed through it during cooking didn’t have any bad effects on the spoon: no heating and no sparks.

As far as the food is concerned, the presence of the spoon redirected the microwaves somewhat, but probably without causing any noticeable changes in how the food cooked. There is certainly no residual radiation of any sort and the food is no more likely to cause cancer after being cooked with metal around than had there been no spoon with it. In general, leaving a spoon in a cup of coffee or bowl of oatmeal isn’t going to cause any trouble at all. I do it all the time. In fact, having a metal spoon in the liquid may reduce the likelihood of superheating the liquid, a dangerous phenomenon that occurs frequently in microwave cooking. Superheated liquids boil violently when you disturb them and can cause serious injuries as a result.

My mother-in-law feels that by shaking a partially consumed bottle of carbonated…

My mother-in-law feels that by shaking a partially consumed bottle of carbonated beverage after re-sealing it, it will re-pressurize keeping the carbonation better than just resealing it. I believe that, since the amount of CO2 in the beverage and the container will stay constant, that either re-sealing or re-sealing and shaking will have the same net effect when it comes to maintaining carbonation. Is she right? – JK, New Mexico

No, you are right. In the long run, the number of CO2 molecules left in the bottle when you close it is all that matters. Those molecules will drift in and out of the liquid and gas phases until they reach equilibrium. At the equilibrium point, there will be enough molecules in the gas phase to pressurize the bottle and enough in the liquid phase to give the beverage a reasonable amount of bite.

By giving the sealed bottle a shake, your mother-in-law is simply speeding up the approach to equilibrium. She is helping the CO2 molecules leave the beverage and enter the gas phase. The bottle then pressurizes faster, but at the expense of dissolved molecules in the beverage itself. If there is any chance that you’ll drink more before equilibrium has been reached, you do best not to shake the bottle. That way, the equilibration process will be delayed as much as possible and you may still be able to drink a few more of those CO2 molecules rather than breathing them.

Incidentally, shaking a new bottle of soda just before you open it also speeds up the equilibration process. For an open bottle, equilibrium is reached when essentially all the CO2 molecules have left and are in the gas phase (since the gas phase extends over the whole atmosphere). That’s not what you want at all. Instead, you try not to shake the beverage so that it stays away from equilibrium (and flatness) as long as possible. For most opened beverages, equilibrium is not a tasty situation.

My roommate and I heard that it’s possible to project the picture from our TV se…

My roommate and I heard that it’s possible to project the picture from our TV set onto the wall. We’d love to sit on our porch and watch TV while drinking a beer. Any ideas? – JK

The simple answer to your question is yes, you can do it. But you’ll encounter two significant problems with trying to turn your ordinary TV into a projection system. First, the lens you’ll need to do the projection will be extremely large and expensive. Second, the image you’ll see will be flipped horizontally and vertically. You’ll have to hang upside-down from your porch railing, which will make drinking a beer rather difficult.

About the lens: in principle, all you need is one convex lens. A giant magnifying glass will do. But it has a couple of constraints. Because your television screen is pretty large, the lens diameter must also be pretty large. If it is significantly smaller than the TV screen, it won’t project enough light onto your wall. And to control the size of the image it projects on the wall, you’ll need to pick just the right focal length (curvature) of the lens. You’ll be projecting a real image on the wall, a pattern of light that exactly matches the pattern of light appearing on the TV screen. The size and location of that real image depends on the lens’s focal length and on its distance from the TV screen. You’ll have to get these right or you’ll see only a blur. Unfortunately, single lenses tend to have color problems and edge distortions. Projection lenses need to be multi-element carefully designed systems. Getting a good quality, large lens with the right focal length is going to cost you.

The other big problem is more humorous. Real images are flipped horizontally and vertically relative to the light source from which they originate. Unless you turn your TV set upside-down, your wall image will be inverted. And, without a mirror, you can’t solve the left-right reversal problem. All the writing will appear backward. Projection television systems flip their screen image to start with so that the projected image has the right orientation. Unless you want to rewire your TV set, that’s not going to happen for you. Good luck.

Is it true that the buoyancy of an incompressible bathysphere doesn’t change whe…

Is it true that the buoyancy of an incompressible bathysphere doesn’t change when it plunges to great depths in the ocean, even though the pressure exerted on it increases enormously? – AM

A submerged object’s buoyancy (the upward force exerted on it by a fluid) is exactly equal to the weight of the fluid it displaces. In this case, the upward buoyant force on the bathysphere is equal in amount to the weight of the water it displaces. Since the bathysphere is essentially incompressible, it always displaces the same volume of water. And since water is essentially incompressible, that fixed volume of water always weighs the same amount. That’s why the bathysphere experiences a constant upward force on it due to the surrounding water. To sink the bathysphere, they weight it down with heavy metal particles. And to allow the bathysphere to float back up, they release those particles and reduce the bathysphere’s total weight.

If a microwave oven door were to open while it was still on, what would happen? …

If a microwave oven door were to open while it was still on, what would happen? Could it hurt you? – JP

The microwaves would flow out of the oven’s cooking chamber like light streaming out of a brightly illuminated mirrored box. If you were nearby, some of those microwaves would pass through you and your body would absorb some of them during their passage. This absorption would heat your tissue so that you would feel the warmth. In parts of your body that have rapid blood circulation, that heat would be distributed quickly to the rest of your body and you probably wouldn’t suffer any rapid injuries. But in parts of your body that don’t have good blood flow, such as the corneas of your eyes, tissue could heat quickly enough to be permanently damaged. In any case, you’d probably feel the warmth and realize that something was wrong before you suffered any substantial permanent injuries.

My teacher said that if you lift a 5 pound sack, you are doing work but if you c…

My teacher said that if you lift a 5 pound sack, you are doing work but if you carry the sack, you aren’t doing any work. Why is that?

When you lift the sack, you are pushing it upward (to support its weight) and it is moving upward. Since the force you exert on the sack and the distance it is traveling are in the same direction, you are doing work on the sack. As a result, the sack’s energy is increasing, as evidenced by the fact that it is becoming more and more dangerous to a dog sitting beneath it.

But when you carry the sack horizontally at a steady pace, the upward force you exert on the sack and the horizontal distance it travels are at right angles to one another. You don’t do any work on the sack in that case. The evidence here is that the sack doesn’t become any more dangerous; its speed doesn’t increase and neither does its altitude. It just shifts from one place to an equivalent one to its side.

I am currently working on a physics project, the magnetic levitation train. How …

I am currently working on a physics project, the magnetic levitation train. How can I make this train move on the track without it crashing? I only have a few days to make it work so I can present it in the science fair. – VC

I’m afraid that you’re facing a difficult problem. Magnetic levitation involving permanent magnets is inherently and unavoidably unstable for fundamental reasons. One permanent magnet suspended above another permanent magnet will always crash. That’s why all practical maglev trains use either electromagnets with feedback circuitry (magnets that can be changed electronically to correct for their tendencies to crash) or magnetoelectrodynamic levitation (induced magnetism in a conducting track, created by a very fast moving (>100 mph) magnetized train). There are no simple fixes if what you have built so far is based on permanent magnets alone. Unfortunately, you have chosen a very challenging science fair project.

I am in 4th grade, and working on a science fair project using a basketball and …

I am in 4th grade, and working on a science fair project using a basketball and have it pumped with 0 psi, 3 psi, 6 psi, 9 psi and 12 psi of air. Why is it that the 9psi ball bounces the highest when dropped from 6ft? – T

The more pressure a basketball has inside it, the less its surface dents during a bounce and the more of its original energy it stores in the compressed air. Air stores and returns energy relatively efficiently during a rapid bounce, so the pressurized ball bounces high. But an underinflated ball dents deeply and its skin flexes inefficiently. Much of the ball’s original energy is wasted in heating the bending skin and it doesn’t bounce very high. In general, the higher the internal pressure in the ball, the better it will bounce.

However, the ball doesn’t bounce all by itself when you drop it on a flexible surface. In that case, the surface also dents and is responsible for part of the ball’s rebound. If that surface handles energy inefficiently, it may weaken the ball’s bounce. For example, if you drop the ball on carpeting, the carpeting will do much of the denting, will receive much of the ball’s original energy, and will waste its share as heat. The ball won’t rebound well. My guess is that you dropped the ball on a reasonably hard surface, but one that began to dent significantly when the ball’s pressure reached 12psi. At that point, the ball was extremely bouncy, but it was also so hard that it dented the surface and let the surface participate strongly in the bouncing. The surface probably wasn’t as bouncy as the ball, so it threw the ball relatively weakly into the air.

I’d suggest repeating your experiment on the hardest, most massive surface you can find. A smooth cement or thick metal surface would be best. The ball will then do virtually all of the denting and will be responsible for virtually all of the rebounding. In that case, I’ll bet that the 12psi ball will bounce highest.

Is it better to use warm or cold air to defrost your windshield?

Is it better to use warm or cold air to defrost your windshield?

If you can’t alter the air’s humidity, warm air will definitely heat up your window faster and defrost it faster than cold air. The only problem with using hot air is that rapid heating can cause stresses on the window and its frame because the temperature will rise somewhat unevenly and lead to uneven thermal expansion. Such thermal stress can actually break the window, as a reader informed me recently: “On one of the coldest days of this Boston winter, I turned up the heat full blast to defrost the windshield. The outside of the window was still covered with ice, which I figured would melt from the heat. After about 10 minutes of heating, the windshield “popped” and a fracture about 8 inches long developed. The windshield replacement company said I would have to wait a day for service, since this happened to so many people over the cold evening that they were completely booked.” If you’re nervous about breaking the windshield, use cooler air.

About the humidity caveat: if you can blow dry air across your windshield, that will defrost it faster than just about anything else, even if that air is cold. The water molecules on your windshield are constantly shifting back and forth between the solid phase (ice) and the gaseous phase (steam or water vapor). Heating the ice will help more water molecules leave the ice for the water vapor, but dropping the density of the water vapor will reduce the number of water molecules leaving the water vapor for the ice. Either way, the ice decreases and the water vapor increases. Since you car’s air condition begins drying the air much soon after you start the car than its heater begins warming the air, many modern cars concentrate first on drying the air rather than on heating it.