What is zero point energy?

What is zero point energy? — AWG, Karachi, Pakistan

All objects in our universe have wave-like characteristics that manifest themselves in certain circumstances. These wave-like characteristics become more significant as objects become smaller. Their wave-like characteristics allow small particles to have ill-defined locations. To understand what I mean by “ill-defined locations”, consider a wave on the surface of a lake. There is no one point at which this wave is located—it is located over a region of the water’s surface. Waves don’t have well defined locations. Similarly, if you observe an electron, which is really a wave, there is no one point at which that electron is located—it is located over a region of space. Because of the detailed relationships between wavelength, frequency, and energy, the smaller the region of space in which the electron-wave can be found, the higher its energy must be. Thus an electron that is localized at all—that is known to be within a certain region of space—must have a certain minimum energy, even if it is stationary. This minimum energy is called zero point energy and it is a consequence of trying to localize the particle within a certain region of space. Since the zero point energy is a base level and can’t be reduced, you can’t use zero point energy to do anything useful. It’s just there.

Can a rocket, starting back toward the earth from 30,000 feet, reach the speed o…

Can a rocket, starting back toward the earth from 30,000 feet, reach the speed of sound before reaching the earth? — WJT, Crystal, MN

Some rockets probably reach the speed of sound in a few hundred feet heading upward, so that reaching the speed of sound in 30,000 feet heading downward would be a simple task. In fact, if you dropped a highly aerodynamic object such as a rocket from 30,000 feet, it could reach the speed of sound even without any propulsion! Gravity alone will accelerate it to about 130% of the speed of sound.

Our problem concerns temperature. At different temperatures, solubility of compo…

Our problem concerns temperature. At different temperatures, solubility of compounds varies. If we extract water from a pond at two degrees Celsius and then test it at room temperature, our reading isn’t going to be accurate. On the other hand, it isn’t practical for us to perform out tests outside. The substances we are testing are nitrites, nitrates, ammonia, pH, hardness, oxygen level, phosphates, temperature, and ORP. — J&E, Missouri

If you collect pond water at 2° C and then bring it into a room at 20° C, there will be a few subtle changes in the water’s contents. While the amounts of various dissolved materials can’t change unless atoms move in or out of the water, how they interact with one does change somewhat with temperature. I would be very surprised if anything that’s dissolved in that pond water comes out of solution when you warm it to room temperature, so if all you want to do is to determine the concentrations of various dissolved materials, go ahead and do it at room temperature. You might have to be careful with dissolved gases, because it’s relatively easy for gas molecules to enter or leave the pond water without your noticing that it’s happening, but the nitrites, nitrates, hardness, and phosphates aren’t going anywhere. Ammonia can leave as a gas, so you should be a little careful with it. I don’t know enough about ORP (oxidization reduction potential) to say anything about it. But you’ll have to be very careful with oxygen concentration because you can modify this just by pouring the water through air and making bubbles.

However, to be sure that the contents of the pond water are interacting with one another just as they were in the pond, you should cool the water back down to 2° C before making any measurements. This is particularly important for pH measurements, since water’s pH decreases slightly with increasing temperature.

How far away is the moon?

How far away is the moon?

It’s about 235,000 miles (375,000 kilometers) away from the earth’s surface. However, it’s drifting about 1.3 inches (3.5 centimeters) farther away every year. That’s because tides on the rotating earth gently pull the moon forward in its orbit as they slowly extract energy from the earth’s rotation. Because of this transfer of energy from the earth’s rotation to the moon’s orbit, the moon is gradually slipping farther away from the earth.

Can an object be heated no hotter than the temperature of the flame beneath it? …

Can an object be heated no hotter than the temperature of the flame beneath it? For example, if the temperature of a candle flame is 1770° C and the melting point of the solid being heated above it is 1800° C, would the solid ever melt if the flame were held under it long enough? — MR, Ohio

The answer is a qualified no. Heat always flows from hotter objects to colder objects, so the solid can’t get any hotter than the flame that’s heating it. But this observation is stems from the laws of thermodynamics, particularly the second law of thermodynamics. Unlike Newton’s laws of motion, which are rigid, inviolable laws that are never, even violated in our universe, the second law of thermodynamics is a statistical laws—it says that certain events are extremely unlikely but doesn’t say that they are truly impossible. The flow of heat from hotter to colder is a statistical law, not a rigid mechanical law. So it is possible, although extraordinarily unlikely, that heat can flow from the 1770° C flame to the 1799° C solid and warm that solid all the way to 1800° C. However, for any reasonable sized solid (say, more than 10 atoms), the possibility of this occurring is going to be so unbelievably small as to be ridiculous. It’s as unlikely as taken a crystal wineglass that has been crushed into dust and then dropping it on the floor and having the impact reassemble the wineglass into its original pristine form. The laws of motion don’t forbid such as fantastic result, but it sure would be unlikely. I’ve tried it several times myself, without success. But then, you’re not going to be able to melt your solid with a not-hot-enough flame, either. You’d have to wait a few ages of the universe just to have that solid climb a tiny fraction of a degree above the temperature of the flame. For 20 degrees… forget it.

How do you make an energy converter to convert water into energy?

How do you make an energy converter to convert water into energy? — SB

I’m afraid that there is no simple way to convert water into energy. People have been trying to use fusion to extract the nuclear energy stored in the hydrogen nuclei in water. But while billions of dollars have been spent on research, there is no viable scheme for this process for controlled fusion in sight. The stars are powered by hydrogen fusion, but people on the earth aren’t likely to be using it as a source for peaceful energy any time soon.

What is pH and why is it so important to my garden pond and spa?

What is pH and why is it so important to my garden pond and spa? — NW, California

pH is a measure of the concentration of dissolved hydrogen ions in water. When a hydrogen atom loses an electron and becomes a hydrogen ion—a proton—it can dissolve nicely in water. Actually, this proton sticks itself to the oxygen atom of a water molecule, producing a hydronium ion (H3O+) that is then carried around by shells of water molecules. The higher the concentration of hydrogen (or hydronium) ions in water, the lower the water’s pH. More specifically, pH is negative the log (base 10) of the molar hydrogen ion concentration. That means that water with a pH of 6 has ten times as many hydrogen ions per liter as water with a pH of 7.

Pure water naturally contains some hydrogen ions, formed by water molecules that have spontaneously dissociated into hydrogen ions (H+) and hydroxide ions (OH). Pure water has enough of these hydrogen ions in it to give it a pH of 7. But if you dissolve acidic materials in the water, materials that tend to produce hydrogen ions, the pH of the water will drop. If you dissolve basic materials in the water, materials that tend to bind with hydrogen ions and reduce their concentration, the pH of the water will rise. Water with too many or too few hydrogen ions tends to be chemically aggressive and we do best in water that has a pH near 7.

How does a black light work?

How does a black light work? — JLM, Kettering, OH

I think that most black lights are gas discharge lamps that resemble normal fluorescent lamps. However, while a normal fluorescent light uses fluorescent phosphors to convert the ultraviolet light produced by its mercury discharge into visible light, a black light allows that ultraviolet light to emerge from the lamp unchanged. The ultraviolet light from a mercury discharge has too short a wavelength to be useful or safe as artistic black light, so other gases are likely to be used. The lamps are probably filtered so that they emit relatively little visible light or short wavelength ultraviolet light.

When you spray water from a garden hose into the air, with the sun behind you, y…

When you spray water from a garden hose into the air, with the sun behind you, you see a rainbow which appears to stretch right across the sky, in the same way that rainbows form by normal rain appear. In the garden hose case, the water droplets are only a few feet in front of the observer. Is the image of a normal rainbow also only a few feet away or is it formed by droplets within the total volume of the rain shower? If this latter case is true, does the rainbow in fact form a complete circle that is cut off by the horizon? — RP, Solihull, England

A rainbow isn’t an image that originates at a specific distance away from your eyes. It consists of rays of colored light that travel at particular angles away from the water droplets that produce them. You see red light coming toward you from a certain angle because at that angle, the water droplets are all sending red light toward you. In the garden hose case, the water droplets are so densely arranged that they are able to create a brilliant rainbow in only a few meters of thickness. In a typical rainstorm, sunlight must travel through hundreds or thousands of meters of raindrops to produce an intense rainbow. When you look up toward the red arc of the normal rainbow, you are seeing light directed toward your eyes by millions of water droplets, some close and others distant, that are all sending a part of the red portion of the sunlight striking them toward you and the other wavelengths of sunlight elsewhere.

You are correct that a normal rainbow is cut off abruptly by the horizon and that it would continue down below to form a full circle if the ground weren’t in the way. People in airplanes sometimes see full 360° rainbows.

Why is the Hubble telescope in space rather than on earth?

Why is the Hubble telescope in space rather than on earth? — L

The earth’s atmosphere has poor optical properties that seriously diminish the resolving powers of even the finest earth-based telescopes. You can see these optical problems by watching the warm air rise above a radiator or hot pavement on a summer day. The little swirls and eddies of heated air distort the scenery beyond them. Earth-based telescopes have to look at the stars through several miles of swirling, inhomogeneous atmosphere and they struggle to compensate for the imaging problems this air causes. Most world-class telescopes are located on mountaintops, far from lighted urban centers and away from humidity and clouds. But even the sky above these mountaintop observatories causes problems. By putting Hubble in space, they got rid of all atmospheric problems—air turbulence, clouds, and nearby lighting. They also made it possible for Hubble to operate around the clock by eliminating the blue sky that blinds telescopes during the day.