I’m doing a science fair project on electricity and I need to know how to make a…

I’m doing a science fair project on electricity and I need to know how to make a homemade hot dog cooker. – BE

Although I have never done it myself, I understand that it is possible to run electric power directly from the power line through a hot dog and to use the resistive heating that occurs as electric current struggles to pass through the hot dog to cook that hot dog. While I can’t recommend doing this and caution anyone trying it to be extremely careful with the electricity (i.e. seek adult supervision from someone who is experienced with the safe handling of electricity), I believe that it can be done. My understanding is that you should carefully connect each wire of an electric power cord (unplugged!) to its own nail (choose an uncoated steel nail to avoid toxic materials). You should then insert one nails into each end of the hot dog and place that hot dog on a safe, nonconducting surface where no one and nothing can touch it. Finally, you should plug the electric cord into an electric socket that is properly connected to a working circuit breaker. I would recommend using a socket protected by a ground-fault interrupter (GFI) such as are used in modern bathrooms (the ones with a “test” and “reset” button). (As you can see, I don’t want anyone hurt!) I’m not sure how quickly the hot dog will cook, but I’d expect it to be quite fast. Be sure to unplug the cord before getting anywhere near the hot dog.

Why is alternating current better than direct current?

Why is alternating current better than direct current? — MK, California

The genius of George Westinghouse and Nikola Tesla in the late 1800’s was to realize that producing alternating current made it possible to transfer power easily from one electric circuit to another with the help of an electromagnetic device called a transformer. When an alternating electric current passes through the primary wire coil of a transformer, the changing magnetic and electric fields that this current produces transfer power from that primary current to the current passing through another coil of wire—the secondary coil of the transformer. While no electric charges move between these two wires, electric power does. With the help of a transformer, it’s possible for a generating plant to move power from a large current of relatively low energy electric charges—low voltage charges—to a small current of relatively high-energy electric charges—high voltage charges. This small current of high voltage electric charges can move with relatively little power loss through miles and miles of high voltage transmission lines and can go from the generating plant to a distant city without wasting much power. Upon arrival at the city, this current can pass through the primary coil of another transformer and its power can be transferred to a large current of relatively low voltage charges flowing through the secondary coil of that transformer. The latter current can then deliver this electric power to your neighborhood. A transformer can’t transfer power between two circuits if those circuits operate with direct current. Edison tried to use direct current in his power delivery systems and fought Westinghouse and Tesla tooth and nail for years. Edison even invented the electric chair to “prove” that alternating current was much more dangerous than direct current. Still, Westinghouse and Tesla won out in the end because they had the better idea.

How can people lay on a bed of nails and still survive?

How can people lay on a bed of nails and still survive? — LW, Marion, OH

If you push gently on the tip of one nail, it won’t pierce your finger. When you push on the nail, it pushes back on you, but the force pushing the nail against your finger isn’t strong enough to break your skin. If you push twice as hard on two nails at once, using two different fingers, then the force you exert on each nail will be the same as before and each nail will push back against one of your fingers with the same force as before. Once again, the nails won’t break your skin. If you now push 100 times as hard against 100 nails, each nail won’t push hard enough against you to break your skin. In fact, a few hundred nails will be able to push on you with an overall force equal to your weight without piercing you. That’s the idea behind a bed of nails—by lying on many nails at once, you allow so many nails to push upward on you that, while the overall force they exert on you is enough to balance your weight, the force exerted by each individual nail isn’t enough to draw blood. These nails have to be spread out around your body so that no individual nails bear more than their fair share of your weight. If one of the nails took too much of your weight, you’d be hurt by it.

With reference to power generation and transmission, can you please explain “Vo…

With reference to power generation and transmission, can you please explain “Volt Amp Reactance” (VAR, kVAR, MVAR). What is meant by “importing/exporting VAR’s”? What is meant when a plant is “consuming/producing VAR’s”— ID, Northern Territory, Australia

In most situations of AC electric power generation or AC electric power consumption, the current flowing through the circuit is in phase with (or, more simply, directly proportional to) the voltage across the circuit. But that isn’t always the case. In situations involving reactive components (e.g., capacitors and inductors), it’s possible for the current and voltage to be out of phase with one another. If the current and voltage are a full 90° out of phase, there is no average power flowing through the circuit. I believe that VAR is a reference to this portion electricity in the circuit—the portion for which the voltage and current are 90° out of phase. While this portion of the electricity doesn’t transfer any power, it does place demands on the power transmission system. I think that the distinctions between “importing” and “exporting” and between “consuming” and “producing” are related to the phase ordering of the current and voltage (whether a device is acting as a capacitor or an inductor). In one case, the voltage leads the current by 90° and in the other the current leads the voltage by 90°.

Why is it that the same transformers seem to always be hit by lightning?

Why is it that the same transformers seem to always be hit by lightning?

Lightning tends to strike elevated objects that acquire large charges that are opposite to those of the clouds. Since transformers are often elevated and they are connected to wires that allow them to become highly polarized when a charged cloud passes overhead, transformers are good targets for lightning.

What will be the source of energy for vehicles 50 years from now?

What will be the source of energy for vehicles 50 years from now? — AW, Karachi, Pakistan

When the earth’s petroleum supply has been depleted to point where it becomes too precious and expensive to burn, electric vehicles will probably take over. While it’s possible to synthesize chemical fuels, I don’t think it will be worth the trouble. The bigger question is where the electricity needed to charge the batteries will come from. I’ll bet on solar power. Right now, electric cars don’t save fossil fuels or keep the air significantly cleaner because the electricity those cars use is obtained by burning fossil fuels. But the electric cars of the future will probably obtain their electric power from the sun. Nuclear fission and fusion are also possibilities, but fission power has its drawbacks and its not clear when or even if fusion power will be available.

If voltage shocks you, why does current kill you?

If voltage shocks you, why does current kill you?

Your skin is a very good electric insulator and it prevents any current from passing through your body as long as that current doesn’t have much voltage. A higher voltage (the electric equivalent of “pressure”) is required to push charge through your skin. But once the charge is inside you body, it moves through you quite easily—your body fluids are essentially salt solutions and are relatively good conductors of electricity.

However, a small current passing through your body won’t cause injury. It takes about 0.030 amperes or 30 milliamperes to cause a life-threatening disturbance to your “electric system.” The small currents associated with static electricity are not enough to cause trouble, even through they easily pass through your skin. So high voltages are needed to break through your protective barrier—your skin—in order to give you a shock, but large currents are needed to injury you.

What accounts for the difference between two sounds having the same frequency, l…

What accounts for the difference between two sounds having the same frequency, loudness, etc. but generated by a guitar and a sitar? — AW, Karachi, Pakistan

Different instruments sound different, even when they play the same notes at the same volumes, primarily because they add different amounts of harmonic tones to their fundamental tones and because these various tones change in volume with time. When you play a note on a guitar, you don’t hear just one pure frequency with a constant volume. Instead, you hear the fundamental frequency and all of the integer multiples of that frequency—the harmonics of that frequency. The relative volumes of those harmonics, and how those volumes change with time, are characteristic of the guitar. If you listen to the same note on a sitar, the relative volumes of the harmonics will be different and you will hear the difference. Because both instruments are plucked, the sounds they emit both start loud and gradually grow softer. If you were to bow their strings, the sound would start soft and gradually grow louder. That’s one reason that you can distinguish a guitar or sitar from a violin.

What makes a paper airplane fly when its wings are not shaped like real airplane…

What makes a paper airplane fly when its wings are not shaped like real airplane wings? — JC, Idaho Falls, ID

Even though a paper airplane’s wings are flat, they experience all of the aerodynamic forces found in more sophisticated wings. For example, when the air flowing past the paper airplane encounters the lower surfaces of its wings, this air slows down and its pressure rises above atmospheric pressure. However, while the air flowing over a sophisticated airplane wing experiences a substantial increase in speed and consequently a drop in pressure, this effect is very small in a paper airplane’s wing. Depending on how the air flows over or around the wing’s leading edge and whether or not it breaks away from the wing’s upper surface, the air pressure above the wing will be at or slightly below atmospheric pressure. Nonetheless, the air pressure below the wing is always slightly higher than that above the wing and the wing experiences a net upward aerodynamic force—a lift force. If you examine the airflow around a well-designed paper airplane wing, all of the flow features that occur around a sophisticated wing will be present but weak. Bowing the wing outward, as is done in a sophisticated wing, simply enhances those features so that the wing can lift a larger load.