How do electronic touch pads and switches work?

The new soft drink dispenser at a nearby store has touch pads that release soda as long as you are pressing on them. I noticed that if I press a pad with something other than my fingers (like a straw or car key) nothing happens, no matter how hard I press. Yet with my fingers, I sometimes don’t even have to make actual contact — just very close proximity. What is happening here? — RLB

Those touch pads are sensing your presence electronically, not mechanically. More specifically, electric charge on the pad pushes or pulls on electric charge on your finger and the pad’s electronics can tell that you are there by how charge on the pad reacts to charge on your finger.

Because your finger and your body conduct electricity, the pad’s electric charge is actually interacting with the electric charge on your entire body. In contrast, a straw is insulating, so the pad can only interact with charge at its tip, and while your car keys are conducting, they are too small to have the effect that your body has on that pad.

There are at least two ways for a pad and its electronics to sense your body and its electric charges. The first way is for the electronics to apply a rapidly alternating electric charge to the pad and to watch for the pad’s charge to interact with charge outside the pad (i.e., on your body). When the pad is by itself, the electronics can easily reverse the pad’s electric charge because that charge doesn’t interact with anything. But when your hand is near the pad or touching it, it’s much harder for the electronics to reverse the pad’s electric charge. If you’re touch the pad, the electronics has to reverse your charge, too, so the electronics sense a new sluggishness in the pad’s response to charge changes. Even when you’re not quite touching the pad, the electronics has some add difficulty reversing the pad’s charge. That’s because the pad’s charge causes your finger and body to become electrically polarized: charges opposite to those on the pad are attracted onto your finger from your body so that your finger becomes electrically charged opposite to the charge of the pad. When the electronics then tries to withdraw the charge from the pad in order to reverse the pad’s charge, your finger’s charge acts to make that withdrawal difficult. The electronics finds that it must struggle to reverse the pad’s charge even though you’re not in direct contact with the pad. Overall, your finger complicates the charge reversals whenever it’s near or touching the pad.

The second way for the pad’s electronics to sense your presence is to let your body act as an antenna for electromagnetic influences in the environment. We are awash in electric and magnetic fields of all sorts and the electric charge on your body is in ceaseless motion as a result. You’ve probably noticed that touching certain input wires of a stereo amplifier produces lots of noise in the speakers; that’s partly a result of the electromagnetic noise in our environment showing up as moving charge on your body. The little pad on the soda dispenser picks up a little of this electromagnetic noise all by itself. When you approach or touch the pad, however, you dramatically increase the amount of electromagnetic noise in the pad. The pad’s electronics easily detect that new noise.

In short, soda dispenser pads are really detecting large electrically conducting objects. Their ability to sense your finger even before it makes contact is important because they need to work when people are wearing gloves. I first encountered electrical touch sensors in elevators when I was a child and I loved to experiment with them. Conveniently, they’d light up when they detected something and there was no need to clean up spilled soda. We’d try triggering them with elbows and noses, and a whole variety of inanimate objects. They were already pretty good, but modern electronics has made touch pads even better. The touch switches used by some lamps and other appliances function in essentially the same way.

Why do clothes dry faster when you open the window?

Why do washed clothes dry faster in open air than in a closed room? — A, Aizawl, India

What thrills me about your question is that while we’ve all noticed this effect, we’re never taught why it happens. Let me ask your question in another way: we know that opening a window makes the clothes dry faster, but how do the clothes know that the window is open? Who tells them?

The explanation is both simple and interesting: the rate at which water molecules leave the cloths doesn’t depend on whether the window is open or closed, but the rate at which water molecules return to the cloths certainly does. That return rate depends on the air’s moisture content and can range from zero in dry air to extremely fast in damp air. Air’s moisture content is usually characterized by its relative humidity, with 100% relative humidity meaning that air’s water molecules land on surfaces exactly as fast as water molecules in liquid water leave its surface. When you expose a glass of water to air at 100% relative humidity, the glass will neither lose nor gain water molecules because the rates at which water molecules leave the water and land on the water are equal. Below 100% relative humidity, the glass will gradually empty due to evaporation because leaving will outpace landing. Above 100% relative humidity, the glass will gradually fill due to condensation because landing will outpace leaving.

The same story holds true for wet clothes. The higher the air’s relative humidity, the harder it becomes for water to evaporate from the cloths. Landing is just too frequent in the humid air. At 100% relative humidity the clothes won’t dry at all, and above 100% relative humidity they’ll actually become damper with time.

When you dry clothes in a room with the window open and the relative humidity of the outdoor air is less than 100%, water molecules will leave the clothes more often than they’ll return, so the clothes will dry. But when the window is closed, the leaving water molecules will remain trapped in the room and will gradually increase the room air’s relative humidity. The drying process will slow down as the water-molecule return rate increases. When the room air’s relative humidity reaches 100%, drying will cease altogether.

Why does steam make ironing cotton pants so much easier?

Why does steam make ironing cotton pants so much easier? — AB, Virginia

Water “plasticizes” the cotton. A plasticizer is a chemical that dissolves into a plastic and lubricates its molecules so that they can move across one another more easily. Cotton is almost pure cellulose, a polymer consisting of sugar molecules linked together in long chains. Since sugar dissolves easily in water, water dissolves easily in cellulose. Even though cellulose scorches before it melts, it can be softened by heat and water. When you iron cotton pants, the steam dissolves into the cellulose molecules and allows the fabric to smooth out beautifully.

Is it important to ground a microwave oven?

A co-worker who is an intelligent electrical engineer said an ungrounded microwave is dangerous because microwaves can then escape through the holes in the door. Aside from the electrical dangers, I disagreed because I think it is just the size of the holes vs. the wavelength of the microwaves. Does lack of a ground allow some microwaves to escape through the holes in the microwave door? — LG, Maine

You’re right. Whether the microwave oven is grounded or not makes no difference on its screen’s ability to prevent microwave leakage. In fact, the whole idea of grounding something is nearly meaningless at such high frequencies. Since electrical influences can’t travel faster than the speed of light and light only travels 12.4 cm during one cycle of the oven’s microwaves, the oven can’t tell if it’s grounded at microwave frequencies; its power cord is just too long and there just isn’t time for charge to flow all the way through that cord during a microwave cycle.

When you ground an appliance, you’re are making it possible for electric charge to equilibrate between that appliance and the earth. The earth is approximately neutral, so a grounded appliance can’t retain large amounts of either positive or negative charge. That’s a nice safety feature because it means that you won’t get a shock when you touch the appliance, even if one of its power wires comes loose and touches the case. Any charge that the power wire tries to deposit on the case will quickly flow to the earth as the appliance and earth equilibrate.

But charge can’t escape from the appliance through the grounding wire instantly. Light takes about 1 nanosecond to travel 1 foot and electricity takes a little longer than that. For charge to leave your appliance for the earth might well require 50 nanoseconds or more. That’s not a problem for ordinary power distribution, so grounding is generally a great idea. Each cycle of the 60-Hz AC power in the U.S. takes 18 milliseconds to complete, so the appliance and earth have plenty of time to equilibrate with one another. But a cycle of the microwave power in the oven takes less about 0.4 nanoseconds to complete and there’s just no time for the appliance and earth to equilibrate. At microwave frequencies, the electric current flowing through a long wire is wavelike, meaning that at one instant in time the wire has both positive and negative patches, spaced half a wavelength apart along its length. It’s carrying an electromagnetic ripple.

The metal screen on the oven’s door has to reflect the microwaves all by itself. It does this without a problem because the holes are so much smaller than 12.4 centimeters that currents easily flow around them during a cycle of the microwaves. Those currents are able to compensate for the holes in the screens and cause the microwaves to reflect perfectly.

If a bird lands on a high-voltage wire, will it be injured?

A bird lands on an uninsulated 10,000 volt power line. Will it become extra crispy? — RKS, Texas

No. Birds do this all the time. What protects the bird is the fact that it doesn’t complete a circuit. It touches only one wire and nothing else. Although there is a substantial charge on the power line and some of that charge flows onto the bird when it lands, the charge movement is self-limiting. Once the bird has enough charge on it to have the same voltage as the power line, charge stops flowing. And even though the power line’s voltage rises and falls 60 times a second (or 50 times a second in some parts of the world), the overall charge movement at 10,000 volts just isn’t enough to bother the bird much. At 100,000 volts or more, the charge movement is uncomfortable enough to keep birds away, so you don’t see them landing on the extremely high-voltage transmission lines that travel across vast stretches of countryside.

The story wouldn’t be the same if the bird made the mistake of spanning the gap from one wire to another. In that case, current could flow through the bird from one wire to the other and the bird would run the serious risk of becoming a flashbulb. Squirrels occasionally do this trick when they accidentally bridge a pair of wires. Some of the unexpected power flickers that occur in places where the power lines run overhead are caused by squirrels and occasionally birds vaporizing when they let current flow between power lines.

Why do I sometimes shock myself when I kiss Uncle Al?

Why do I sometimes shock myself when I kiss Uncle Al? — BS

If both of you were electrically neutral before the kiss, nothing would happen. Evidently, one of you has developed a net charge and that charge is suddenly spreading itself out onto the other person during the kiss. That charge flow is an electric current and you feel currents flowing through your body as a shock.

Most likely, one of you has been in contact with a insulating surface that has exchanged charge with you. For example, if you walked across wool carpeting in rubber-soled shoes, that carpeting has probably transferred some of its electrons to your shoes and your shoes have then spread those electrons out onto you. Rubber binds electrons more tightly than wool and so your shoes tend to steal a few of electrons from wool whenever it gets a chance. If you walk around a bit or scuff your feet, you’ll typically end up with quite a large number of stolen electrons on your body. When you then go and kiss Uncle Al, about half of those electrons spread suddenly onto him and that current flow is shocking!

Hydrogen and Energy – Fraud, PR, and Politics

There is a video circulating on the internet which purports to show an “inventor” who has a machine that burns water. Water is broken down into hydrogen and oxygen which is then burned to produce….more water! I maintain that the net energy produced would be about zero since energy must be expended to separate water into hydrogen and oxygen. Your comments please. — ST, Arizona

You have it exactly right. Water itself is burned hydrogen, and the energy required to separate water into hydrogen and oxygen is equal to the energy released when the hydrogen subsequently burns back into water. Energy in and energy out. Just as in bicycling, if you want to roll downhill, you have to pedal uphill first.

Anyone who claims to be able to extract useful energy through a process that starts with water and ends with water is a charlatan. Either they aren’t producing any useful energy or it’s coming from some other source. In these sorts of frauds, there is usually some electrical component that is supposedly needed to keep a minor part of the apparatus functioning. That component isn’t insignificant at all; it’s what actually keeps the entire apparatus functioning!

Hydrogen has such a mythical aura to it, but in the context of energy, it’s just another fuel. Actually, it’s more of any energy storage medium than a basic fuel. That’s because hydrogen doesn’t occur naturally on earth and can only be produced by consuming another form of energy. There is so much talk about “the hydrogen economy” and the notion that hydrogen will rescue us from our dependence on petroleum. Sadly, politicians who promote hydrogen as the energy panacea neither understand science nor respect those who do. Since it takes just as much energy to produce hydrogen from water as is released when that hydrogen burns back into water, hydrogen alone won’t save us.

As we grow progressively more desperate for useable energy, the amount of fraud and misinformation will only increase. There are only a few true sources for useable energy: solar energy (which includes wind power, hydropower, and biomass), fossil fuels (which include petroleum and coal), geothermal energy, and nuclear fuels. Hydrogen is not among them; it can be produced only at the expense of one of the others. Even ethanol, which is touted as an environmentally sound replacement for petroleum, has its problems; producing a gallon of ethanol can all too easily consume a gallon of petroleum.

Where energy is concerned, watch out for fraud, hype, PR, and politics. If we survive the coming energy and climate crises, it will be because we’ve learned to conserve energy and to obtain it primarily from solar and perhaps nuclear sources. It will also be because we’ve learned to set politics and self-interest aside long enough to make accurate analyses and sound decisions.

Lightbulbs and Power

What does it mean if a light bulb uses 60 watts? — B, Los Angeles

The watt is a unit of power, equivalent to the joule-per-second. One joule is about the amount of energy it takes to raise a 12 ounce can of soda 1 foot. A 60 watt lightbulb uses 60 joules-per-second, so the power it consumes could raise a 24-can case of soda 2.5 feet each second. Most tables are about 2.5 feet above the floor. Next time you leave a 60-watt lightbulb burning while you’re not in the room, imagine how tired you’d get lifting one case of soda onto a table every second for an hour or two. That’s the mechanical effort required at the generating plant to provide the 60-watts of power you’re wasting. If don’t need the light, turn off lightbulb!

Does space dust settle on orbiting space shuttles?

Does space dust settle on orbiting space shuttles? — A, Troy, MT

What a great question! I love it. The answer is no, but there’s much more to the story.

I’ll begin to looking at how dust settles in calm air near the ground. That dust experiences its weight due to gravity, so it tends to descend. Each particle would fall like a rock except that it’s so tiny that it experiences overwhelming air resistance. Instead of falling, it descends at an incredibly slow terminal velocity, typically only millimeters per second. It eventually lands on whatever is beneath it, so a room’s floor gradually accumulates dust. But dust also accumulates on vertical walls and even on ceilings. That dust is held in place not by its weight but by electrostatic or chemical forces. When you go into an abandoned attic, most of the dust is on the floor, but there’s a little on the walls and on the ceiling.

OK, now to the space shuttle. The shuttle is orbiting the earth, which means that although it has weight and is falling freely, it never actually reaches the earth because it’s heading sideways so fast. Without gravity, its inertia would carry it horizontally out into space along a straight line path. Gravity, however, bends that straight line path into an elliptical arc that loops around the earth as an orbit.

So far no real surprises: dust near ground level settles in calm air and the shuttle orbits the earth. The surprise is that particles of space dust particles also orbit the earth! The shuttle orbits above the atmosphere, where there is virtual no air. Without air to produce air resistance, the dust particles also fall freely. Those with little horizontal speed simply drop into the atmosphere and are lost. But many dust particles have tremendous horizontal speeds and orbit the earth like tiny space shuttles or satellites.

Whether they are dropping toward atmosphere or orbiting the earth, these space dust particles are typically traveling at velocities that are quite different in speed or direction from the velocity of the space shuttle. The relative speed between a dust particle and the shuttle can easily exceed 10,000 mph. When such a fast-moving dust particle hits the space shuttle, it doesn’t “settle.” Rather, it collides violently with the shuttle’s surface. These dust-shuttle collisions erode the surfaces of the shuttle and necessitate occasional repairs or replacements of damaged windows and sensors. Astronauts on spacewalks also experience these fast collisions with space dust and rely on their suits to handle all the impacts.

Without any air to slow the relative speeds and cushion the impacts, its rare that a particle of space dust lands gracefully on the shuttle’s surface. In any case, gravity won’t hold a dust particle in place on the shuttle because both the shuttle and dust are falling freely and gravity doesn’t press one against the other. But electrostatic and chemical attractions can hold some dust particles in place once they do land. So the shuttle probably does accumulate a very small amount of accumulated space dust during its travels.

Why do scantron-type tests only read #2 pencils? Can other pencils work?

Why do scantron-type tests only read #2 pencils? Can other pencils work? — MW, Montgomery, AL

The #2-pencil requirement is mostly historical. Because modern scantron systems can use all the sophistication of image sensors and computer image analysis, they can recognize marks made with a variety of materials and they can even pick out the strongest of several marks. If they choose to ignore marks made with materials other than pencil, it’s because they’re trying to be certain that they’re recognizing only marks made intentionally by the user. Basically, these systems can “see” most of the details that you can see with your eyes and they judge the markings almost as well as a human would.

The first scantron systems, however, were far less capable. They read the pencil marks by shining light through the paper and into Lucite light guides that conveyed the transmitted light to phototubes. Whenever something blocked the light, the scantron system recorded a mark. The marks therefore had to be opaque in the range of light wavelengths that the phototubes sensed, which is mostly blue. Pencil marks were the obvious choice because the graphite in pencil lead is highly opaque across the visible light spectrum. Graphite molecules are tiny carbon sheets that are electrically conducting along the sheets. When you write on paper with a pencil, you deposit these tiny conducting sheets in layers onto the paper and the paper develops a black sheen. It’s shiny because the conducting graphite reflects some of the light waves from its surface and it’s black because it absorbs whatever light waves do manage to enter it.

A thick layer of graphite on paper is not only shiny black to reflected light, it’s also opaque to transmitted light. That’s just what the early scantron systems needed. Blue inks don’t absorb blue light (that’s why they appear blue!), so those early scantron systems couldn’t sense the presence of marks made with blue ink. Even black inks weren’t necessarily opaque enough in the visible for the scantron system to be confident that it “saw” a mark.

In contrast, modern scantron systems used reflected light to “see” marks, a change that allows scantron forms to be double-sided. They generally do recognize marks made with black ink or black toner from copiers and laser printers. I’ve pre-printed scantron forms with a laser printer and it works beautifully. But modern scantron systems ignore marks made in the color of the scantron form itself so as not to confuse imperfections in the form with marks by the user. For example, a blue scantron form marked with blue ink probably won’t be read properly by a scantron system.

As for why only #2 pencils, that’s a mechanical issue. Harder pencil leads generally don’t produce opaque marks unless you press very hard. Since the early scantron machines needed opacity, they missed too many marks made with #3 or #4 pencils. And softer pencils tend to smudge. A scantron sheet filled out using a #1 pencil on a hot, humid day under stressful circumstances will be covered with spurious blotches and the early scantron machines confused those extra blotches with real marks.

Modern scantron machines can easily recognize the faint marks made by #3 or #4 pencils and they can usually tell a deliberate mark from a #1 pencil smudge or even an imperfectly erased mark. They can also detect black ink and, when appropriate, blue ink. So the days of “be sure to use a #2 pencil” are pretty much over. The instruction lingers on nonetheless.

One final note: I had long suspected that the first scanning systems were electrical rather than optical, but I couldn’t locate references. To my delight, Martin Brown informed me that there were scanning systems that identified pencil marks by looking for their electrical conductivity. Electrical feelers at each end of the markable area made contact with that area and could detect pencil via its ability to conduct electric current. To ensure enough conductivity, those forms had to be filled out with special pencils having high conductivity leads. Mr. Brown has such an IBM Electrographic pencil in his collection. This electrographic and mark sense technology was apparently developed in the 1930s and was in wide use through the 1960s.