Does an (audio) amplifier benefit from using matched pairs of power transistors?

Does an (audio) amplifier benefit from using matched pairs of power transistors?

A decade or two ago, it was important to match the power transistors used to control currents leaving an audio amplifier. If the transistor that controlled current flowing one direction through the speaker was significantly different from the transistor that controlled current flowing in the opposite direction, then the sound reproduction would be poor. That’s because the current flows would be asymmetric and asymmetric currents lead to distorted sounds from the speaker. The most common measure of this sort of error is called “total harmonic distortion,” an indication of how much power the amplifier puts into unwanted high frequency currents. Without carefully matched power transistors, an amplifier might put several percent of its power into these harmonic frequencies.

However, modern audio amplifiers generally use feedback techniques to correct for their own internal imperfections. They can compensate so well for mismatches in their components that total harmonic distortion has virtually disappeared from amplifiers. Amplifiers are still rated according to total harmonic distortion, but now it is rarely more than a few thousandths of a percent and depends more on the feedback techniques used than on the perfection of the power switching components. In short, the power transistors in modern amplifiers don’t have to be matched well any more.

How does the coil in a microphone turn sound into electric current?

How does the coil in a microphone turn sound into electric current?

The coil in a microphone is attached to a movable surface that is pushed back and forth by the sound. Near the coil is a magnet so that, as the coil moves, the magnet induces electrical currents in it. Whenever a magnet moves past a coil of wire or a coil of wire moves past a magnet, a current is induced in that coil of wire.