I am being assured by very reputable scientists (Professors of Physics in American and European universities) that centrifugal force is a fictitious force, even though the action of a centrifuge is defined as depending upon it. I would be very grateful if you could help me explain this apparent contradiction and perhaps outline the physical cause that underlies the separating action of a centrifuge, since it can hardly be a nonexistent force. – RGT, Portsmouth, UK
While “centrifugal force” is something we all seem to experience, it truly is a fictitious force. By a fictitious force, I mean that it is a side effect of acceleration and not a cause of acceleration.
There is no true outward force acting on an object that’s revolving around a center. Instead, that object’s own inertia is trying to make it travel in a straight-line path that would cause it to drift farther and farther away from the center. The one true force acting on the revolving object is an inward one-a centripetal force. The object is trying to go straight and the centripetal force is pulling it inward and bending the object’s path into a circle.
To get a feel for the experiences associated with this sort of motion, let’s first imagine that you are the revolving object and that you’re swinging around in a circle at the end of a rope. In that case, your inertia is trying to send you in a straight-line path and the rope is pulling you inward and deflecting your motion so that you go in a circle. If you are holding the rope with your hands, you’ll feel the tension in the rope as the rope pulls on you. (Note that, in accordance with Newton’s third law of motion, you pull back on the rope just as hard as it pulls on you.) The rope’s force makes you accelerate inward and you feel all the mass in your body resisting this inward acceleration. As the rope’s force is conveyed throughout your body via your muscles and bones, you feel your body resisting this inward acceleration. There’s no actual outward force on you; it’s just your inertia fighting the inward acceleration. You’d feel the same experience if you were being yanked forward by a rope-there would be no real backward force acting on you yet you’d feel your inertia fighting the forward acceleration.
Now let’s imagine that you are exerting the inward force on an object and that that object is a heavy bucket of water that’s swinging around in a circle. The water’s inertia is trying to make it travel in a straight line and you’re pulling inward on it to bend its path into a circle. The force you exert on the bucket is quite real and it causes the bucket to accelerate inward, rather than traveling straight ahead. Since you’re exerting an inward force on the bucket, the bucket must exert an inward force on you (Newton’s third law again). It pulls outward on your arm. But there isn’t anything pulling outward on the bucket, no mysterious “centrifugal force.” Instead, the bucket accelerates in response to an unbalance force on it: you pull it inward and nothing pulls it outward, so it accelerates inward. In the process, the bucket exerts only one force on its surroundings: an outward force on your arm.
As for the operation of a centrifuge, it works by swinging its contents around in a circle and using their inertias to make them separate. The various items in the centrifuge have different densities and other characteristics that affect their paths as they revolve around the center of the centrifuge. Inertia tends to make each item go straight while the centrifuge makes them bend inward. The forces causing this inward bending have to be conveyed from the centrifuge through its contents and there’s a tendency for the denser items in the centrifuge to travel straighter than the less dense items. As a result, the denser items are found near the outside of the circular path while the less dense ones are found near the center of that path.