Why does a high voltage transformer make ozone?

Why does a high voltage transformer make ozone?

High voltages involve large accumulations of like electric charges. These charges repel one another ferociously and can leap off into the air near sharp points and edges. They produce sparks and corona discharges. While these discharges are useful in some devices (e.g. copiers and air cleaners), they tend to transfer energy to air molecules and can break up those air molecules. When normal oxygen molecules (which each contain 2 oxygen atoms) break up, the resulting oxygen atoms can stick to other oxygen molecules to form ozone molecules (which each contain 3 oxygen atoms). That is why you can often smell ozone near electrical discharges, high voltage power lines, and after thunderstorms.

What are the relationships between Joules, Coulombs, Amperes, Volts, and Watts?

What are the relationships between Joules, Coulombs, Amperes, Volts, and Watts?

A Joule is a unit of energy; the capacity to do work. A Coulomb is a quantity of electric charge; equal to about 6,250,000,000,000,000,000 elementary charges. An Ampere is a measure of current; equal to the passage of 1 Coulomb of charge each second. A Volt is a measure of the energy carried by each charge; equal to 1 Joule of energy per Coulomb of charge. A Watt is a measure of power; equal to 1 Joule per second. A current of 1 Ampere at a voltage of 1 Volt carries a power of 1 Watt. That is because each Coulomb of charge carries 1 Joule of energy (1 Volt) and there is 1 Coulomb of charge moving by each second (1 Ampere). That makes for 1 Joule of energy flowing each second (1 Watt).

Why does less current flow through a longer wire?

Why does less current flow through a longer wire?

Wires obey Ohm’s law: the current flowing through them is proportional to the voltage drop across them. But the precise relationship depends on the wire’s length. A short wire will carry a large current even when the voltage drop across it is small because that wire has a small electrical resistance; it does not impede the flow of electricity very much. But a long wire has a large electrical resistance and will only carry a large current if the voltage drop across it is large. If you do not change the source of electrical power (e.g. a battery) and replace short wires with long wires, those wires will not be able to carry as much current.