Why do north and south poles on magnets change back and forth?

Why do north and south poles on magnets change back and forth?

Only electromagnets can change back and forth and then only when they are connected to a supply of alternating current. A permanent magnet, such as that used to hold notes to a refrigerator, has permanent poles that do not change. But an AC powered electromagnet, such as that found in a transformer, does have poles that change back and forth.

Is it true that if you double the current through a wire then you double the vol…

Is it true that if you double the current through a wire then you double the voltage loss and if you halve the current then you halve the voltage loss?

Yes. When you try to push current through a wire, the voltage drop across that wire (i.e. the energy lost by each charge passing through that wire) is proportional to the number of charges flowing through that wire each second (i.e. the current through the wire). If you double the number of charges flowing through the wire each second, then each charge will lose twice as much energy (the voltage drop across the wire will double). If you halve the number of charges flowing through the wire each second, then each charge will lose half as much energy (the voltage drop across the wire will halve).

Why does a high voltage transformer make ozone?

Why does a high voltage transformer make ozone?

High voltages involve large accumulations of like electric charges. These charges repel one another ferociously and can leap off into the air near sharp points and edges. They produce sparks and corona discharges. While these discharges are useful in some devices (e.g. copiers and air cleaners), they tend to transfer energy to air molecules and can break up those air molecules. When normal oxygen molecules (which each contain 2 oxygen atoms) break up, the resulting oxygen atoms can stick to other oxygen molecules to form ozone molecules (which each contain 3 oxygen atoms). That is why you can often smell ozone near electrical discharges, high voltage power lines, and after thunderstorms.