Are there any objects that use compressed air to create electricity?

Are there any objects that use compressed air to create electricity?

Moving air is used to create electricity: wind-powered generators. Compressed air is usually created with electrical power, so using it to generate electricity would be inefficient. But wind-powered generators are a common sight in some parts of the country. The wind blows on the turbine blades, doing work on them and providing the mechanical power needed to turn a generator. The generator converts this mechanical work into electrical energy.

How can current alternate

How can current alternate — why doesn’t it cancel itself out.

Actually, it does cancel out on the average. When you plug a toaster into the AC power line and turn it on, current begins to flow back and forth through that toaster. At first it flows out one wire of the outlet, through the toaster, and returns into the other wire of the outlet. About 1/120th of a second later, the current has reversed direction and is now flowing out of the second wire of the outlet, through the toaster, and into the first wire. It continues flowing back and forth so that, on the average, it heads nowhere. But the toaster receives energy with every cycle of the current so that there is a net flow of power to the toaster even if there is no net flow of current through it.

How do diodes work?

How do diodes work?

Diodes are made of semiconductors, which are essentially the same as photoconductors. These materials normally have electrons filling all of the valence levels and empty conduction levels. The empty conduction levels are at energies well above those of the valence levels so that electrons cannot easily shift from a valence level to a conduction level, a shift that is necessary for the material to conduct electricity. Thus semiconductors are normally insulating. But when the semiconductor is mixed or “doped” with other atoms, it can become conducting. A doping that removes electrons from the valence levels and leaves some of those levels empty produces “p-type” semiconductor. A doping that adds electrons to the conduction levels produces “n-type” semiconductor. Both “n-type” and “p-type” semiconductors can conduct electricity. But when the two materials touch, the form a non-conducting “depletion” region, where all of the conduction electrons in the “n-type” material near the junction have wandered into the “p-type” material to fill the empty valence levels there. This p-n junction or diode can only carry current in one direction. If you add electrons to the “n-type” side of the junction, they will push into the depletion region and can cross over into the “p-type” side. Thus electrons can flow from the “n-type” side to the “p-type” side; current can flow from the “p-type” side to the “n-type” side. But if you add electrons to the “p-type” side, they fill in empty valence levels in that “p-type” material and make the depletion region even larger. The diode cannot conduct current from the “n-type” side to the “p-type” side. Thus the diode is a one-way device for current.

How do photocells work?

How do photocells work?

A photocell is just a diode that is specialized to turn light into separated electrical charge. When light hits the “n-type” side of this diode, it adds energy to the valence level electrons there and moves them to the empty conduction levels. These electrons may even have enough energy to leap across the p-n junction into the “p-type” material. Once they get there, they cannot return because of the depletion region and the one-way effect of the diode. Instead, they are collected by wires attached to the “p-type” material, flow out through some electrical circuit, and return to the “n-type” material through another set of wires.