What is the correct way to dispose of fluorescent lamps? Do they really have mer…

What is the correct way to dispose of fluorescent lamps? Do they really have mercury inside them? Is the powder that covers the inside of them dangerous? Is there a simple way to get rid of a burned fluorescent lamp without pollution? – Augusto

While there is mercury in a fluorescent lamp, the amount of mercury is relatively small. There are only about 0.5 milligrams of mercury in each kilogram of lamp, or 0.5 parts per million. In fact, because fluorescent lamps use so much less energy than incandescent lamps, they actually reduce the amount of mercury introduced into our environment. That’s because fossil fuels contain mercury and burning fossil fuels to obtain energy releases substantial amounts of mercury into the environment. If you replace your incandescent lamps with fluorescent lamps, the power company will burn less fuel and release less mercury. That’s one reason to switch to fluorescent lamps, even if you must simply throw those lamps away when they burn out. Nonetheless, there are programs to recycle the mercury in fluorescent lamps. Last year, the University of Virginia recycled 31 miles of fluorescent lamps. They distilled the mercury out of the white phosphor powder on the inner walls of the tubes. Once the mercury has been removed from that powder, the powder is not hazardous. The university also recycled the glass. One last note: the mercury is an essential component of the fluorescent lamp—mercury atoms inside the tube are what create ultraviolet light that is then converted to visible light by the white phosphor powder that covers the inside of the tube.

Can you get a tan from an ultraviolet light bulb?

Can you get a tan from an ultraviolet light bulb?

Yes. Tanning appears to be your skin’s response to chemical damaged caused by ultraviolet (high energy) light. Each photon of ultraviolet let carries enough energy to break a chemical bond in the molecules that make up your skin. Exposure to this light slowly rearranges the chemicals in your tissue. Some of the byproducts of this chemical rearrangement trigger a color change in your skin, a change we call “tanning”. Any source of ultraviolet light will cause this sequence of events and produce a tanning response. However, the different wavelengths of light have somewhat different effects on your skin. Long wavelength ultraviolet (between about 300 and 400 nanometers) seems to cause the least injury to cells while evoking the strongest tanning response. Short wavelength ultraviolet (between about 200 and 300 nanometers) does more injury to skin cells and causes more burning and cell death than tanning. However, all of these wavelengths have enough energy to damage DNA and other genetic information molecules so that all ultraviolet sources can cause cancer.

When the temperature is sub-zero (e.g., -40°), is it necessary to heat the e…

When the temperature is sub-zero (e.g., -40°), is it necessary to heat the electrodes or the gas or both for the tube to light? What is the optimum tube temperature with respect to efficiency?

Fluorescent lamps do not operate well in extreme cold. Below about 15° C (59° F), the density of mercury atoms in the tube’s vapor is too low to produce efficient light. While the tube also contains inert gases that allow it to start at almost any temperature, the scarcity of mercury atoms leads to a reduced light output. In any case, the electrodes must be heated to make them emit electrons to sustain the discharge.

The optimal internal temperature for a fluorescent lamp is about 60° C (140° F). The tube reaches this internal temperature when its outside is about 40° C (104° F). When the surrounding temperature exceeds 40° C, the tube begins to waste energy again because the density of mercury atoms in the vapor becomes too large.

Do fluorescent light fixtures emit magnetic fields? If so, would they be intense…

Do fluorescent light fixtures emit magnetic fields? If so, would they be intense enough to affect diskette magnetic media?

While fluorescent light fixtures do emit magnetic fields, those fields are far too weak to affect magnetic media. Any electric current produces a magnetic field, even the current flowing through the gas inside a fluorescent tube. However, that field is so weak that it would be difficult to detect. Nearby iron or steel could respond to that weak magnetic field and intensify it, but the field would still be only barely noticeable. The only strongly magnetic component in a fluorescent fixture is its ballast coil. The ballast serves to stabilize the electric discharge in the lamp and relies on a magnetic field to store energy. However, the ballast is carefully shielded and most of its magnetic field remains inside it.

As for affecting diskette magnetic media, that’s extraordinarily unlikely. Even if you held a diskette against the ballast, I doubt it would cause any trouble. Modern magnetic recording media have such high coercivities (resistances to magnetization/demagnetizations) that they are only affected by extremely intense fields.

Where does the extra energy go after ultraviolet light goes through the phosphor…

Where does the extra energy go after ultraviolet light goes through the phosphor coating? Is it lost as heat?

Yes. The extra energy is converted into heat by the phosphors. Their electrons absorb the light energy, convert some of that energy into heat, and then reemit the light. Since the new light contains less energy per particle (per photon) than the old light, it appears as visible rather than ultraviolet light.

Do neon lights have glass that is not colored, but has phosphors that emit a par…

Do neon lights have glass that is not colored, but has phosphors that emit a particular color?

A true neon light tube has completely clear (no color, no phosphor) glass surrounding a thin gas of neon atoms. When current runs through that gas, the neon atoms emit red light. In “neon tubes” that emit colors other than red (green, pink, orange, yellow, etc.), there is a layer of phosphor on the inside surface of the glass and mercury vapor inside the tube. These fluorescent tubes probably don’t contain any neon at all. You can see the light coming from the phosphor coating. In a true neon tube, you can see the light coming from the gas itself, well inside the glass tube.

Why do fluorescent emissions of light not produce more heat?

Why do fluorescent emissions of light not produce more heat?

When an atom is excited by a collision and then emits energy as light, it converts most of the collision energy into light. Thus the gas in a fluorescent lamp experiences many collisions but emits most of the collision energy as light. The gas becomes slightly hot, but not nearly as hot as the filament of an incandescent bulb. The electrical energy arrives at the fluorescent bulb as a current of charged particles and most of this energy leaves the bulb as light, without ever becoming heat. However the electrical energy arriving at an incandescent bulb becomes heat first and then becomes light. The conversion of electrical energy to heat dramatically reduces the bulb’s ability to emit visible light efficiently.

Does the size of the bulb affect its intensity?

Does the size of the bulb affect its intensity?

The intensity of a normal fluorescent light bulb is determined by how many times each second (1) a mercury atom can absorb energy in a collision and emit a photon of ultraviolet light and (2) a phosphor particle can absorb a photon of ultraviolet light and emit a photon of visible light. The first rate depends on how much current and electrical power can flow through the tube, which in turn depends on (A) the geometry of the tube and (B) the density of mercury vapor inside. As for (A), the long, thin tube seems to be the best geometry choice for a low voltage (120V) tube, producing a certain amount of ultraviolet light per cubic centimeter of volume. The longer or fatter the tube, the more electrical power it will require and the more ultraviolet light it will produce. As for (B), at room temperature, the density of mercury vapor is just about right. In very cold weather, the density drops quite low and the bulb becomes dim (thus fluorescents are not recommended for outdoor use in cold climates). Finally, the second rate (conversion to visible light) depends on the coating of phosphors on the inside of the tube. A tube that is too fat will send too much ultraviolet light at the phosphors and they will become inefficient. So a long thin tube is a good choice again. Each region of tube surface converts the light from a relatively small volume of mercury gas. Overall, the intensity of the bulb scales roughly with the volume of the tube. Big tubes emit more light than little tubes. One of the challenges facing fluorescent lamp manufacturers is in making small tubes emit lots of light. To replace an incandescent lamp with a miniaturized fluorescent, that miniaturized fluorescent must emit lots of light for its size. They’re getting better every year, but they aren’t bright enough yet.

Why do fluorescent tubes explode if broken (is it the compression of the gas)?

Why do fluorescent tubes explode if broken (is it the compression of the gas)?

Fluorescent tubes operate at very low pressure; roughly 1/1000th of an atmosphere. They do not explode when broken; they implode. The atmospheric pressure surrounding the tube crushes it as soon as it begins to crack. The tube shape of a typical fluorescent tube is chosen because it can withstand the enormous compressive forces of the atmosphere better than most other shapes.

How do “forbidden transitions” become less forbidden as pressure builds?

How do “forbidden transitions” become less forbidden as pressure builds?

For an atom to determine that it cannot make a particular transition (that its electron cannot move from one particular orbital to another), it must first “test the water”. The atom effectively tries to make particular transition but finds that this transition is not possible. However, if the atom experiences a collision during the test period, the atom may “accidentally” undergo the forbidden transition. It is as though the atom was prevented from canceling the experiment.