I have a friend who refuses to stand in front of the microwave oven in his kitch…

I have a friend who refuses to stand in front of the microwave oven in his kitchen, because he feels the “nuclear waves” leak and will cause his sperm to deform (and he doesn’t want ugly kids). Is this true? What about car phones? He heard they were bad, too!

Both microwave ovens and car phones emit electromagnetic radiation. But that radiation has relatively long wavelengths (about 12 cm in the case of microwave ovens and about 40 cm in the case of car phones) and is not at all like the electromagnetic waves emitted by nuclear processes. Nuclear electromagnetic radiation, usually called gamma rays, has extremely short wavelengths (less than 0.001 nanometer or about a millionth of the wavelength of visible light). All electromagnetic waves are emitted and absorbed as particles called photons. The energy in a photon is inversely proportional to its wavelength (in vacuum). Gamma rays, with their short wavelengths, have very energetic photons that can do lots of chemical damage to your tissue. But the longer wavelength radiation from microwave ovens and car phones comes as very low energy photons. These photons can’t do chemical damage. The only thing those waves can do is heat things. Microwave ovens are carefully shielded so that they keep most of the microwaves inside. If those waves did emerge, they would simply warm your tissue up. This warming won’t cause genetic damage but it could cook your tissue. There has been recent concern about low frequency electromagnetic fields causing subtle damage to tissue, but these have not be substantiated by scientific research and no physically reasonable scenarios for how such damage could occur have been offered.

I’d heard that if I cook in the microwave oven, there will be a possible formati…

I’d heard that if I cook in the microwave oven, there will be a possible formation of free radicals. Is it true? If yes, how? — Angela I.

It’s doubtful that microwave cooking forms free radicals in food. The microwaves in a microwave oven cook by exerting torques on the water molecules and gradually increasing the water molecules’ thermal energies through friction-like effects. There is never enough energy present in a single molecule at one time to shatter that molecule and form a free radical. While ultraviolet light, such as that found in sunlight, carries enough energy per photon (particle of light) to split a molecule and form a free radical, microwave radiation carries very little energy per photon. That’s why microwave photons can’t do chemical damage the way ultraviolet photons can. However, even if microwave radiation could form free radicals in food, that wouldn’t necessarily cause you trouble when you eat that food. So much happens to the food before it enters your blood stream that a free radical probably won’t survive. The more harmful free radicals are ones that are actually created inside your body, where they can immediately attack important molecules in your cells.

If a microwave does not melt ice, how does the “Defrost” setting on the microw…

If a microwave does not melt ice, how does the “Defrost” setting on the microwave work?

I’ve already noted the issues of warming frozen food. However, the “defrost” setting is an interesting issue. If you’ve ever watched a microwave trying to defrost food, you’ve probably noticed that it heats the food briefly and then waits. It repeats this process many times. What it is doing is depositing energy (via the microwaves) into whatever water molecules are able to absorb microwaves. It then waits for this energy to flow as heat into the nearby food. Once the heat has been distributed rather evenly, the oven adds some more energy by turning the magnetron back on. This cycle of heating and waiting allows the food to defrost fairly evenly. Still, microwaves are likely to create hot and cold regions in the food so that some parts of the food will cook rather than defrost while some parts remain frozen.

If a radio station operated at 2.45 gigahertz, could you pick it up when your mi…

If a radio station operated at 2.45 gigahertz, could you pick it up when your microwave was turned on and attached speakers?

If some radio station were to operate at 2.45 gigahertz, the main effect would be very poor reception of that channel on your radio. The oven isn’t a transmitter for microwaves; it just makes them like crazy. Most of the microwaves never leave the cooking chamber and there are strict regulations on any leakage. But it would only take a few thousandths of a watt of leaking microwave power to cause trouble in your reception of the radio station. Your radio wouldn’t be able to distinguish that station’s transmission from microwaves leaking out of your oven. The radio would struggle to pick up the signal and you would probably hear lots of noise in the background.

In microwaves – you heat up food really fast. Is it true that microwaved food wi…

In microwaves – you heat up food really fast. Is it true that microwaved food will cool down faster than oven heated food? Someone told me “if it heats fast, it will then cool fast.”

No. Microwaves cook the food in a very different manner than normal thermal heating, but microwaved food has the same thermal energy that it would have if it had been warmed by more traditional methods. Microwaves heat food by exerting torques on the individual water molecules in the food. These molecules jiggle back and forth and sliding friction between them heats the food. This peculiar route to energy addition explains why frozen portions of the food don’t heat well: the water molecules are rigidly oriented and can’t jiggle back and forth in order to become hot. But despite the fancy heating scheme, the food retains no memory of how it was heated. Once it is uniformly hot, it cools at a rate that depends only on how heat is transported out of it. Microwaved food cools just as slowly as normally cooked food.

Inside the microwave oven, what is it that heats the food? How does the heat com…

Inside the microwave oven, what is it that heats the food? How does the heat come out; where did it come from?

The food is heated by the microwaves themselves and these microwaves are piped into the cooking chamber from the magnetron. The magnetron has electric charge sloshing back and forth in its tines. A small antenna uses that sloshing charge to emit microwave radiation. The water molecules in the food absorb this microwave radiation and turn its energy into heat. The usual rules of heat transfer don’t apply in the heating process—the energy arrives at the food as microwaves, not heat.

On the subject of defrosting frozen food in a microwave oven, you must refer to …

On the subject of defrosting frozen food in a microwave oven, you must refer to the old BTU formula which states “It takes one BTU to raise the temperature of 1 pound of water 1° (Fahrenheit), but when water is changing state from a solid (ice) to a liquid (water), it must absorb 144 BTUs (per pound).” – George R.

This observation accounts for much of difficulty with defrosting food in general and defrosting food in a microwave oven in particular. It often takes more heat to melt ice in the food than it does to actually cook the food once the ice has melted. Since ice doesn’t absorb microwaves well, heating frozen foods in a microwave oven is a tricky business. Any region of food that melts early will absorb microwaves strongly and overheat while any region of food that remains frozen won’t absorb microwaves well and won’t receive the enormous amounts of heat it needs just to melt. The result is typically a food item with some frozen parts and some boiling hot parts. To avoid this problem, microwave oven defrost cycles let the food sit in between bursts of microwave heating. That way, there is time for heat to flow through the food and keep the internal temperatures relatively uniform. Parts of the food that heat well have time to transfer heat to parts that don’t heat well and the whole item thaws and heats together.

What containers are not safe to use in a microwave? I am particularly concerned …

What containers are not safe to use in a microwave? I am particularly concerned about Styrofoam containers as I use them to make TV dinners for my family. Is it OK to heat directly in these containers?

The two critical issues with containers in a microwave are (1) that they do not absorb or reflect microwaves and (2) that they tolerate high temperatures. Concerning the first issue, a container that absorbs microwaves will become extremely hot and may be damaged or destroyed. Most plastics (including Styrofoam) don’t absorb microwaves and are fine. Glazed water-free ceramics and glasses are usually also fine, as long as they don’t have any metallic trim. Metal dishes are a poor choice because they reflect microwaves and lead to uneven heating. Unglazed ceramics absorb water and will overheat.

Concerning the second issue, many plastics melt or soften below the temperature of boiling water. Polystyrene, the plastic from which Styrofoam is made, has a glass transition temperature of almost exactly 212° Fahrenheit (100° Celsius). That means that it will begin to soften at just about the temperature of boiling water. While pure water will boil without much problem in Styrofoam, water containing dissolved solids such as sugar or salt will boil at a higher temperature and may melt the Styrofoam. You’ll know when this happens…it’s not really a health issue, just a potential for a messy oven. I’ve only encountered the problem once myself, when a Polystyrene gravy separator melted in the microwave and let the gravy spill.

What exactly goes on when you’re cooking a potato in the microwave and it explod…

What exactly goes on when you’re cooking a potato in the microwave and it explodes?

A microwave oven heats food by depositing energy in its water. If you cook the food long enough, that water can begin to boil. If the food has a hard outer shell (e.g. a potato or a corn kernel), the boiling water can create enough pressure in the food to make it explode. That is what pops the corn in microwave popcorn and why the potato explodes if you don’t pierce it so that steam can escape.

Are microwaves distributed unevenly in the oven? Why do manufacturers claim that…

Are microwaves distributed unevenly in the oven? Why do manufacturers claim that microwaves with turntables are more effective than microwaves without turntables?

As the microwaves bounce around the inside of the cooking chamber, they tend to interfere with one another. There are usually regions in which the waves that follow various paths almost cancel one another and regions in which the waves reinforce one another. These regions don’t cook food equally well. If the microwaves are canceled in one region, cooking will be slow there. If the microwaves reinforce one another in another region, cooking will be fast there. If you simply leave food in one place and try to cook it in the microwaves, the cooking will be uneven. However, if the food is rotated continuously, these good and bad cooking regions will be blurred away so that the food will all cook at about the same speed.