What exactly goes on when you’re cooking a potato in the microwave and it explod…

What exactly goes on when you’re cooking a potato in the microwave and it explodes?

A microwave oven heats food by depositing energy in its water. If you cook the food long enough, that water can begin to boil. If the food has a hard outer shell (e.g. a potato or a corn kernel), the boiling water can create enough pressure in the food to make it explode. That is what pops the corn in microwave popcorn and why the potato explodes if you don’t pierce it so that steam can escape.

Are microwaves distributed unevenly in the oven? Why do manufacturers claim that…

Are microwaves distributed unevenly in the oven? Why do manufacturers claim that microwaves with turntables are more effective than microwaves without turntables?

As the microwaves bounce around the inside of the cooking chamber, they tend to interfere with one another. There are usually regions in which the waves that follow various paths almost cancel one another and regions in which the waves reinforce one another. These regions don’t cook food equally well. If the microwaves are canceled in one region, cooking will be slow there. If the microwaves reinforce one another in another region, cooking will be fast there. If you simply leave food in one place and try to cook it in the microwaves, the cooking will be uneven. However, if the food is rotated continuously, these good and bad cooking regions will be blurred away so that the food will all cook at about the same speed.

What happens if you start the microwave oven with nothing inside?

What happens if you start the microwave oven with nothing inside?

The magnetron creates microwaves that travel into the cooking chamber and should be absorbed there. If there is no food (or rather no water-containing food), those microwaves will not be absorbed and will eventually find their way back to the magnetron. Eventually the magnetron will absorb as many microwaves as it emits. This situation is hard on the magnetron, which works best when it has very little radiation returning to it. That’s why you should never run a microwave empty for more than a second or two.

Are microwaves harmful to you? Is eating microwaved food harmful?

Are microwaves harmful to you? Is eating microwaved food harmful?

Microwaves can heat your body by adding thermal energy to the water molecules in you. This heating can be damaging if it’s not controlled. Most of your body is protected from slow heating because your blood carries heat away from any local hot spots so that you warm evenly. However there are a few places that aren’t cooled by your circulation and can heat up locally enough to denature the protein molecules and cause biological injury. The cornea of your eye is a good example. It can be heated and damaged because it’s not cooled well. That’s why you must be careful not to look into a strong beam of microwaves. As for microwaved food, the only effect of cooking with microwaves is hot food. There is no “radiation damage” or “radioactivity,” as there might be with x-ray or gamma radiation. Some foods should not be cooked in a microwave only because the uneven heating may allow certain parts to become too hot. Those parts may burn you when you eat them or they may suffer thermal damage that diminishes their nutritional value.

Why do microwave ovens cook so rapidly?

Why do microwave ovens cook so rapidly?

When you put solid food (a potato, not soup) into a conventional oven, the heat flows slowly into the center of that food. This heat must work its way into the food via thermal conduction, in which adjacent atoms and molecules transfer their motional energies in a long bucket-brigade process. The last part of a potato to become hot is its center. However, in a microwave oven, the microwaves travel well into the solid food and deposit their energy everywhere. The potato cooks throughout at a relatively even rate. The actual amount of heat and energy involved in conventional and microwave cooking is about the same. However, the microwaves can heat the food throughout without having to wait for the slow process of conduction to carry it inward from the food’s surface.

Can microwaves be emitted to travel in one direction?

Can microwaves be emitted to travel in one direction?

Yes. Like all electromagnetic waves, microwaves can be focused and concentrated in a particular direction. That is exactly what microwave dish antennas (e.g., satellite dishes) do. At the transmitter, they focus the microwaves emitted by a smaller antenna so that those microwaves travel as a parallel beam. At the receiver, they focus the parallel beam of microwaves onto a smaller antenna. You can think of the microwaves as very long wavelength light waves, so that anything you can do with light (e.g., focus it, form images with it, or bend it with optical devices), you can also do with microwaves. The only problem is that the optical elements you use for microwaves must be larger, because the microwaves have longer wavelengths.

Why do some microwave ovens not seem to have a metal surface in the cooking area…

Why do some microwave ovens not seem to have a metal surface in the cooking area?

The cooking chamber of a microwave oven is always metallic. Even the glass door has a metal grid across it to keep the microwaves inside. This metal chamber may be coated with paint or plastic but it is there nonetheless. Without it, the microwaves would leak out and the oven would be hazardous and inefficient. It would cook objects throughout the kitchen.

Why does water react in a violent and dangerous way when overheated in a microwa…

Why does water react in a violent and dangerous way when overheated in a microwave oven? CA

Water doesn’t always boil when it is heated above its normal boiling temperature (100 °C or 212 °F). The only thing that is certain is that above that temperature, a steam bubble that forms inside the body of the liquid will be able to withstand the crushing effects of atmospheric pressure. If no bubbles form, then boiling will simply remain a possibility, not a reality. Something has to trigger the formation of steam bubbles, a process known as “nucleation.” If there is no nucleation of steam bubbles, there will be no boiling and therefore no effective limit to how hot the water can become.

Nucleation usually occurs at hot spots during stovetop cooking or at defects in the surfaces of cooking vessels. Glass containers have few or no such defects. When you cook water in a smooth glass container, using a microwave oven, it is quite possible that there will be no nucleation on the walls of the container and the water will superheat. This situation becomes even worse if the top surface of the water is “sealed” by a thin layer of oil or fat so that evaporation can’t occur, either. Superheated water is extremely dangerous and people have been severely injured by such water. All it takes is some trigger to create the first bubble-a fork or spoon opening up the inner surface of the water or striking the bottom of the container-and an explosion follows. I recently filmed such explosions in my own microwave (low-quality movie (749KB), medium-quality movie (5.5MB)), or high-quality movie (16.2MB)). As you’ll hear in my flustered remarks after “Experiment 13,” I was a bit shaken up by the ferocity of the explosion I had triggered, despite every expectation that it would occur. After that surprise, you’ll notice that I became much more concerned about yanking my hand out of the oven before the fork reached the water. I recommend against trying this dangerous experiment, but if you must, be extremely careful and don’t superheat more than a few ounces of water. You can easily get burned or worse. For a reader’s story about a burn he received from superheated water in a microwave, touch here.

Here is a sequence of images from the movie of my experiment, taken 1/30th of a second apart: