What happens to gas in a gas mask?

What happens to gas in a gas mask? — TF, Auburn, WA

Most gas masks remove toxic molecules from the air by allowing those molecules to react with or stick to a surface inside the mask. Molecules are generally too small to remove from the air with simple filters, so they must be removed by chemical processes. Highly reactive molecules, such as chlorine, fluorine, and ozone, naturally attack and bind with many chemicals and are easily removed by a mask containing those chemicals. Other molecules aren’t so reactive and must be collected in a more complicated manner. Sometimes the gas mask will contain a reactive chemical that seeks out specific toxic molecules in the air and binds chemically to those molecules. But some mask simply use activated carbon, which just sticks molecules to its surface. The molecules don’t stick very tightly to the carbon surface, so they can be driven off by baking the carbon. But the carbon is finely divided so that it has an enormous amount of surface area and can accumulate a great many molecules before it becomes “full.” Finally, some gas masks contain catalysts that decompose certain toxic molecules, chopping them up before they enter your lungs.

Why is the element mercury a liquid at room temperature when none of its neighbo…

Why is the element mercury a liquid at room temperature when none of its neighbors on the periodic table are? — BZ, Trenton, NJ

The answer to that question lies at least partly in the electronic structure of the mercury atom. The mercury atom is the largest member of the third row of transition metals, meaning that it is the atom at which the 5d shell of electrons is finally filled completely. Whenever a shell of electrons is filled, that shell can no longer assist in forming chemical bonds. While the d shell electrons normally help hold transition metal atoms together, making these metals strong and hard to melt, the filling of the 5d shell makes it hard for mercury atoms to stick to one another. In contrast to metals like tungsten and tantalum, which melt only at very high temperatures, mercury is a liquid at room temperature. Actually, the zinc atom is the atom at which the 3d shell is filled and the cadmium atom is the atom at which the 4d shell is filled. While those two metals are solid at room temperature, they have very low melting points.

How do rotary telephones work?

How do rotary telephones work? — JG, DeSoto, Kansas

As your finger turns the dial of the telephone, you wind a spring and store energy in that spring. When you remove your finger, the spring unwinds and its stored energy drives the dialing mechanism. This mechanism consists of a cogged wheel and a switch, as well as a centrifugal governor. As the dial unwinds, the cogged wheel turns and it’s cogs close and open a switch one time for each number on the dial. For example, if you dial a “6”, the switch closes briefly 6 times. For a “0”, the switch closes 10 times. Each time the switch closes during this action, it “hangs up” the telephone briefly. The switching system at the telephone company recognizes these brief hang-ups as signals for establishing the connection. The centrifugal governor controls the rate at which the dial unwinds and makes sure that the pulses coming from the telephone occur at a uniform rate.

How is chlorine gas used to disinfect water at treatment plants? – KM

How is chlorine gas used to disinfect water at treatment plants? – KM

Chlorine molecules (Cl2) dissolve easily in water, where they react with water molecules to form hypochlorous acid (HOCl), chlorine ions (Cl) and hydrogen ions (H+). Hypochlorous acid is a weak acid that partially dissociates into hydrogen ions (H+) and hypochlorite ions (OCl). Studies have shown that it’s predominantly the hypochlorous acid molecules and the hypochlorite ions that disable and kill microorganisms. These molecules and ions diffuse onto and into the microorganisms and oxidize important biological components, such as the protein coats of some viruses, key enzymes in many bacteria, and the genetic materials in both bacteria and viruses. — Thanks to J. Symons for pointing out this mechanism to me and providing me with detailed reference materials.

How fast does sound travel through the telephone? – T

How fast does sound travel through the telephone? – T

When your voice travels through the telephone, it doesn’t travel as sound. Instead, the microphone of your telephone unit produces an electric current that represents the sound of your voice. From there on until it arrives at the earpiece of your friend’s telephone unit, your voice travels as an electromagnetic signal—either an electric current, a radio wave, or a light wave. Only when it reaches the earpiece is the electromagnetic signal used to recreate the sound itself. Since electromagnetic signals travel at or near the speed of light, your voice moves extremely quickly from your telephone unit to your friend’s telephone unit. It would be quite easy, for example, for a friend living a few miles away to tell you about a nearby explosion or thunderclap and then have you hear that explosion or thunderclap yourself. Your friend’s words would travel much more rapidly through the phone lines than the sound would travel over the countryside.

However, even the speed of light isn’t fast enough in some cases. Shortly after the break-up of AT&T, new long-distance carriers began to appear. Some of these companies used geosynchronous satellites to handle the long distance calls. Because these satellites sit about 22,300 miles above the earth’s equator, the travel time for radio waves to and from these satellites is a substantial fraction of a second. The delay between when you spoke and when your friend heard your voice was long enough that your friend might have begun talking, too. Those conversations were very awkward because you had to be very deliberate about starting and stopping your speech. You almost had to tell your friend when you were done talking so that they could begin. All modern long-distance calls are handled by surface links so that there is almost no delay, except perhaps when going to the other side of the earth.

If time passes more slowly for someone who is moving quickly and enormous speeds…

If time passes more slowly for someone who is moving quickly and enormous speeds are needed to explore distant space, is there any way to counteract this time/speed phenomenon so that those on earth will not die waiting for the “space travelers/explorers” to return? — BC, Ottawa, Canada

Unfortunately, no. Those of us who remained on earth would watch the explorers head off at enormous speeds toward the stars and would be old and gray before they returned. Even if the explorers could move at almost the speed of light, it would take them many years to reach nearby stars and many years to return. Since there is no way that they could travel even as fast as the speed of light, the absolute minimum time it would take for a round trip, from our perspective, would be the round trip distance to the stars divided by the speed of light.

But this brings up one of the peculiar results of special relativity. From our perspective on earth, the explorers are moving quickly as they head toward the stars and their clocks appear to be running slowly to us. But from their perspective, we are moving quickly in the other direction and our clocks appear to be running slowly to them. This apparent paradox is resolved by the fact that the explorers would not agree with us on the ordering of two events occurring at different locations—space and time appear differently to us; they are intermingled. However, when the explorers accelerate in order to turn around and headed back toward us, their perceptions of space and time undergo a radical change. They see our clocks zoom ahead while we continue to see their clocks running fairly slowly. When the explorers finally returned to earth, their clocks indicate that they had been gone only a short time. However our clocks indicate that they had been gone at least as long as the time it would take light to complete the roundtrip. This situation leads to the famous “twin paradox,” in which one twin travels through space while the other remains at home. When the explorer twin returns to earth, the explorer twin is still young but the earthbound twin is very old. If near-light-speed travel were to become possible (a very remote possibility), such twin paradoxes would certainly occur.

Please explain how the different welding systems work, (Arc, TIG, MIG, and Oxy-A…

Please explain how the different welding systems work, (Arc, TIG, MIG, and Oxy-Acet) and why some types work with certain metals (steel, aluminum, titanium, and cast iron) and others don’t? — DC, Ceder, MN

While I have very little experience welding myself, I can make a number of general observations about welding. All of the welding systems you mention are trying to join several pieces of metal by melting them together. In most cases, one of the pieces of metal is being used to form the joint and is sacrificed completely in the process (typically it’s a welding rod made of a special metal that’s good at forming a joint). How the melting and joining process proceeds depends on the welding system used.

An arc welder passes an electric current through the air from the pieces to be joined to a welding rod. The rod becomes so hot as the result of this arc that it melts and joins with the other pieces of metal, binding them together permanently. This scheme only works with relatively non-flammable metals such as steel. Aluminum or titanium will burst into flames when the arc starts. To joint these flammable metals, the arc has to be protected by a shroud of an inert gas such as argon or helium. TIG and MIG welding are based on this inert gas approach (the “IG” part of the names). In Tungsten-Inert-Gas (TIG) welding, an arc passes from the pieces being joined to a tungsten electrode. Tungsten has such as high melting point that it survives this arc and another piece of metal, the welding rod, is fed into the arc where it melts to form the joint. In Metal-Inert-Gas (MIG) welding, the arc passes from the pieces to a metal welding rod. This system resembles normal arc welding, in that the welding rod melts to form the joint, however now the arc is shrouded by a flow of inert gas so that there is no oxygen around to support combustion. Flammable metals can be welded with TIG or MIG welding and so can non-flammable metals.

As for oxygen-acetylene welding, here a very hot flame is used to heat the pieces involved to very high temperatures. A welding rod that melts at a slightly lower temperature than the pieces themselves is then used to join the pieces. The advantage to using this system is that it doesn’t pass a current through the pieces and doesn’t rely on their electric properties. The current of an arc welder could damage thin materials but an oxygen-acetylene flame should not (assuming they are relatively non-flammable metals). I’m sure that the metallurgical characteristics of the joints vary from system to system, but I can’t make any useful statements about this. For a more detailed discussion of when and where to use each technique, you’ll need a more experienced person than me.

I recently received a “strong magnetic cup” as a gift. According to the claims…

I recently received a “strong magnetic cup” as a gift. According to the claims of the maker, water kept in this cup for a minute can lower blood pressure and reduce weight, etc. Please explain how this works. — AL, Pharr, TX

I’m afraid that it works only by psychological effect, if at all. Water itself is non-magnetic and experiences no significant change when exposed to a magnetic field. Although the magnetic field of the cup has an ever so slight effect on the atomic and molecular structure of the water, this effect vanishes when the water leaves the cup. Water from the cup is just plain old water. There are many people in this world who take advantage of the public’s relative inability to distinguish science from pseudoscience. One of the reasons that I enjoy answering questions here is to help people make that distinction. Magnets aren’t magic—they are understandable devices and their effects on everything around them are also understandable.

In high school physics, we learned that matter and energy can neither be created…

In high school physics, we learned that matter and energy can neither be created nor destroyed. Is that true in quantum mechanics? What is quantum mechanics and how did the field come about? — JE, College Station, TX

While modern physics continues to maintain that matter and energy can’t be created or destroyed, the picture is a little more complicated than it was before the discovery of relativity and quantum mechanics. First, relativity ties matter and energy together so that matter can become energy and energy can become matter in certain circumstances. As a result, it’s only the sum of matter and energy that can’t be created or destroyed. Second, there are situations in which that sum of matter and energy can change temporarily in an isolated system. Quantum mechanics and its famous “uncertainty principle” permit brief but important violations of the conservation of mass/energy. The shorter a particular violation, the worse it may be. These violations are never directly observable because all observations are done on long time scales. But there are indirect indications of these temporary violations and they’re critical to much of modern high energy and particle physics.

Quantum mechanics developed at the beginning of this century to explain several strange experimental observations, particularly the photoelectric effect and the black-body radiation spectrum. Einstein received his Nobel Prize for explaining the photoelectric effect in terms of quantum mechanics, not for any of his work on relativity.