How does a surface know how hard it must push upward on an object to support that object?
If you put a piano on the sidewalk, the piano will settle into the sidewalk, squeezing the sidewalk’s surface until the sidewalk stops it from descending. At that point, the sidewalk will be pushing upward on the piano with a force exactly equal in magnitude to the piano’s downward weight. The piano will experience zero net force and will not accelerate. It’s stationary and will remain that way.
But if the sidewalk were to exert a little more force on the piano, perhaps because an animal under the sidewalk was pushing the sidewalk upward, the piano would no longer be experiencing zero net force. It would now experience an upward net force and would accelerate upward. The piano would soon rise above the sidewalk. Of course, once it lost contact with the sidewalk, it would begin to fall and would quickly return to the sidewalk.
For an example of this whole effect, put a coin on a book. Hold the book in your hand. The book is now supporting the coin with an upward force exactly equal to the coin’s weight. Now hit the book from beneath so that it pushes upward extra hard on the coin. The coin will accelerate upward and leap into the air. As soon as it loses contact with the book, it will begin to fall back down.
Thus, if the sidewalk pushed upward too hard, the piano would rise upward and leave the sidewalk’s surface and if the sidewalk pushed upward too weakly, the piano would sink downward and enter the sidewalk’s surface. A balance is quickly reached where the sidewalk pushes upward just enough to keep the piano from accelerate either up or down.