What is one doing when changing the brightness, contrast, and color adjustments …

What is one doing when changing the brightness, contrast, and color adjustments on a television?

The brightness control determines the maximum strength of the electron beam and thus the peak brightness of the phosphors on the screen. The contrast control determines the extent to which the electron beam current changes between bright regions and dim regions on the screen. If the contrast is high, then even a less-than-white spot in the image may produce full beam current and full brightness in the phosphors and a more-than-black spot in the image may be cast as full black (no beam at all). If the contrast is low, then almost the entire screen will be illuminated by a medium electron beam and the image have no full black or full white. The color adjustments control the relative intensities of the red, green, and blue guns. Because of the way color is encoded in the television signal, the traditional controls are hue and tint, which involve mixtures of red, green, and blue. All these controls involve adjustments to the voltages and currents in the electron guns (cathodes), grids, and anodes of the picture tube.

How can computer monitors and televisions have images burnt into them over time?

How can computer monitors and televisions have images burnt into them over time?

As the electron beam collides with the phosphor coating on the inside of the picture tube, it slowly damages that phosphor coating. Eventually the phosphors are burnt away and the inside surface of the picture tube stops being uniform. To avoid burning specific regions more than others, computers use screen savers that darken the images by turning down the electron beam and keep those images moving about randomly.

How can the magnets be manipulated in such a way that they can do this moving of…

How can the magnets be manipulated in such a way that they can do this moving of the electron beam in such an incredibly small amount of time?

The electromagnets that control the beam are able to turn on and off very quickly. The only limit on the rate at which they can change the magnetic field comes from their inductance. They do resist changes in current passing through them. Fortunately, the television doesn’t move the beam about randomly; it sweeps the beam smoothly. Thus the changes in the current through the electromagnetic coils are also smooth. The television has no trouble ramping the field through the horizontal sweep coils back and forth every 1/15,750th of a second.

How do high definition televisions differ from traditional ones?

How do high definition televisions differ from traditional ones?

High definition televisions have more individual spots of color and brightness than the traditional sets. They may also have a somewhat different aspect ratio (horizontal width vs. vertical height). Creating high definition picture tubes is not particularly difficult since they are now rather common on computers. However, transmitting the increased information needed to paint the picture on a high definition television is a serious problem. One approach is data compression, in which redundant information is eliminated from the signal so that only new information is sent to the television. To avoid making all of the present televisions obsolete, the new high definition television standards are supposed to be downward compatible with those televisions. Unfortunately, trying to serve both types of televisions with the same transmitted signal is going to be a difficult task.