Is terminal velocity the same for every object of the same mass or can the terminal velocity of two parachutists (same weight and height) be different? -CV
Terminal velocity is the result of a delicate balance between two forces—an object’s downward weight and the upward drag force that object experiences as it moves downward through the air. Terminal velocity is reached when those two forces exactly balance one another and the object experiences a net force of zero, stops accelerating, and simply coasts downward at a constant velocity. Since the upward drag force increases with downward speed, there is generally a velocity at which this balance occurs—the terminal velocity.
But while a parachutist can’t change her weight, she can change the relationship between her downward speed and the upward drag force she experiences. If she rolls herself into a compact ball, she weakens the drag force and ultimately increases her terminal velocity. On the other hand, if she spreads her arms and legs wide so as to catch more air, she strengthens the drag force and decreases her terminal velocity. Popping open her parachute strengthens the drag force so much that her terminal velocity diminishes almost to zero and she coasts slowly downward to a comfortable landing. So to answer your question—two twin parachutists will descend at very different terminal velocities if they adopt different profiles or if only one opens a parachute.