In a wine tank we use Nitrogen (N2) to sparge both excess Oxygen (O2) and Carbon Dioxide (CO2) out of the wine solution. The sparger injects Nitrogen (N2) into the wine in very small bubbles at 20L/min to remove both Oxygen and Carbon Dioxide. Why does this work? — JT, Australia
During wine making, the amount of dissolved carbon dioxide (and possibly oxygen gas) can easily exceed its equilibrium concentration. That means that the liquid contains more dissolved gas than it would have if exposed to the atmosphere for a long period of time and had thereby reached its equilibrium concentration of the gas. Having too much dissolved gas does not, however, mean that this gas will leave quickly. For example, when you open a bottle of carbonated beverage the carbon dioxide is out of equilibrium. Although the gas was in equilibrium at the high pressure of the sealed bottle, it instantly became out of equilibrium when the bottle was opened and the density of gaseous carbon dioxide suddenly decreased. Nonetheless, it can take days for the excess carbon dioxide to come out of solution and leave. You’ve probably noticed that carbonated beverages take hours or days to “go flat.”
Part of the reason why it takes so long for the dissolved gases to come out of solution is that the gas can only leave through the exposed surface of the liquid. In an open bottle of carbonated beverage that may be only a few square inches or a few dozen square centimeters. The dissolved gas has to find its way to that exposed surface and break free of the liquid. That’s a slow process. The same thing is happening in your wine: the dissolve carbon dioxide and oxygen gases must normally find their way to the top of the tank and then break free to enter the gaseous region at the top of the tank — another slow processes. To speed the escape of dissolved gases, you can enlarge the exposed surface of the liquid by bubbling an inert gas through the liquid. Here, inert gas is any gas that doesn’t dissolve significantly in the liquid and that doesn’t affect the liquid if it does dissolve. Nitrogen is great for wine because it doesn’t interact chemically with the wine. As you let bubbles of nitrogen float upward through the wine, you provide exposed surface within the body of the liquid wine and allow carbon dioxide and oxygen to break free of the liquid and enter those bubbles.
The spherical interface between the gas bubble and the surrounding liquid is a busy, active place — gas molecules are moving between the gas and liquid in both directions. Because carbon dioxide is over-concentrated in the liquid, it is statistically more likely for a carbon dioxide molecule to leave the liquid and enter the bubble’s gas than the other way around. It takes a little energy to break those carbon dioxide molecules free of the liquid and that need for energy affects the balance between dissolved carbon dioxide and gaseous carbon dioxide at equilibrium. The harder it is for the carbon dioxide molecules to obtain the energy they need to escape from the liquid, the greater the equilibrium concentration of dissolved carbon dioxide — the saturated concentration. But your wine is supersaturated, containing more than the equilibrium concentration of dissolved carbon dioxide, so carbon dioxide molecules go from liquid to gas more often than the other way around.
When the degree of supersaturation (excess gas concentration) is high, the transfer of gas molecules from liquid to gas bubble can be fast enough to make the bubbles grow in size significantly as they float up through the wine. You can see this type of rapid bubble growth in a glass of freshly poured soda, beer, or champagne. In beer, champagne, and your wine, however, the liquid surface of the bubble contains various natural chemicals that alter the interface with the gas and affect bubble growth. The “tiny bubbles” of good champagne reflect that influence.
Another way to provide the extra exposed surface in the wine and thereby allow the supersaturated dissolved gases to come out of solution would be to agitate the wine so violently that empty cavities open up within the wine. Although that approach would provide lots of extra surface, it would probably not be good for the wine. Bubbling gas through the wine is a much more gentle.
The exact choice of gas barely matters as long as it is chemically inert in the wine. Argon or helium would be just as effective, but they’re more expensive (and in the case of helium, precious). The temperature of the gas doesn’t matter significantly, but the temperature of the wine does. The cooler the wine, the higher the concentration of dissolved carbon dioxide and oxygen it will contain at equilibrium so you’ll remove more of those gases if you do your bubbling while the wine is relatively warm.