Does this photoconductor stuff have to do with why you can only develop film in …

Does this photoconductor stuff have to do with why you can only develop film in the dark?

Yes. Particles of light, photons, cause chemical changes in the film. You can work with some black-and-white films in red light because red light photons don’t have enough energy to cause changes in those films. However, color film and most modern black-and-white films require complete darkness during processing. If you expose them to any visible light, you’ll cause chemistry to occur.

How do color copiers work?

How do color copiers work?

They assemble 4 colors, yellow, cyan, magenta, and black together to form the final image. The photoconductor creates charge images using blue, red, green, and white illumination successively and uses those images to form patterns of yellow, cyan, magenta, and black toner particles. These particles are then superimposed to form the final image, which appears full color. Naturally, the photoconductor used in such a complicated machine must be sensitive to the whole visible spectrum of light.

As one of my readers (Tom O.) points out, most modern color copiers are essentially scanners plus color printers. They use infrared lasers to write the images optically onto four light-sensitive drums, one drum for each of the four colors (some systems reuse the same drum four times).

Is the red light effect in xerographic copiers the same concept behind red light…

Is the red light effect in xerographic copiers the same concept behind red lights in a darkroom? Does film have the same sort of properties?

Yes. The light sensitive particles in black-and-white photographic paper don’t respond to red light because the energy in a photon of red light doesn’t have enough energy to cause the required chemical change. In effect, electrons are being asked to shift between levels when the light hits them and red light can’t make that happen in the photographic paper. However, most modern black-and-white films are sensitive to red light because that makes roses and other red objects appear less dark and more realistic in the photographs.

Why do poles have to come in pairs?

Why do poles have to come in pairs?

There don’t appear to be any isolated poles in our universe, or at least none have been found. That’s just the way it is. As a result of this situation, the only way to create magnetism is through its relationship with electricity. When you use electricity to create magnetic fields, you effectively create equal pairs of poles—as much north pole as south pole.

How does one create an electric or magnetic field?

How does one create an electric or magnetic field?

The simplest way to make these fields is with electric charges (for an electric field) or with magnets (for a magnetic field). Charges are naturally surrounded by electric fields and magnets are naturally surrounded by magnetic fields. But fields themselves can create other fields by changing with time. That’s how the fields in a light wave work—the electric field in the light wave changes with time and creates the magnetic field and the magnetic field changes with time and creates the electric field. This team of fields can travel through space without any charge or magnets nearby.